Skip to main content
Log in

Effect of dimensionality on Lotka-Volterra predator-prey dynamics: Individual based simulation results

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The effect of varying habitat dimensionality on the dynamics of a model predator-prey system is examined using an individual-based simulation. The general results are that in one dimension fluctuations in abundance of prey and predators occur over a large range of spatial scales (extinctions occur over many spatial scales). In two dimensions (and low mobilities of prey and predators) the dynamics become more predictably periodic at local scales and constant at larger scales due to statistical stabilization. In three dimensions, the model can become “phase-locked” with prey and predators displaying oscillations in abundance over large spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briand, F. and J. E. Cohen. 1987. Environmental correlates of food chain length.Science 238, 956–960.

    Google Scholar 

  • Comins, H. N., M. P. Hassell and R. M. May. 1992. The spatial dynamics of host-parasitoid systems.J. Animal Ecology 61, 753–748.

    Article  Google Scholar 

  • DeAngelis, D. L. and L. J. Gross (eds) 1992.Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. New York: Chapman and Hall.

    Google Scholar 

  • de Roos, A. M., E. McCauley and W. G. Wilson. 1991. Mobility versus density-limited predator-prey dynamics on different spatial scales.Proceedings of the Royal Society of London (Series B) 246, 117–122.

    Google Scholar 

  • Ermentrout, B., J. Campbell and G. Oster. 1986. A model for shell patterns based on neural activity.The Veliger 28, 369–388.

    Google Scholar 

  • Frisch, U., B. Hasslacher and Y. Pomeau. 1986. Lattice gas automata for the Navier-Stokes equation.Phys. Rev. Lett. 56, 1505–1509.

    Article  Google Scholar 

  • Harrison, S. 1991. Local extinction in a metapopulation context: an empirical evaluation.Biol. J. Linnean Soc. 42, 73–88.

    Google Scholar 

  • Huang, K. 1987.Statistical Mechanics. New York: Wiley.

    MATH  Google Scholar 

  • Kirkpatrick, S. and E. P. Stoll. 1981. A very fast shift-register sequence random number generator.J. Compu. Phys. 40, 517–526.

    Article  MATH  MathSciNet  Google Scholar 

  • MacArthur, R. H. and E. O. Wilson. 1967.The Theory of Island Biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Marek, M. and I. Stuchl. 1975. Synchronization in two interacting oscillatory systems.Biophys. Chem. 3, 241–248.

    Article  Google Scholar 

  • McCauley, E., W. G. Wilson and A. M. de Roos. 1993. Dynamics of age-structured and spatially-structured predator-prey interactions: individual-based models and population-level formulations.Am. Naturalist 142, 412–442.

    Article  Google Scholar 

  • Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landscapes.Am. Naturalist 139, 32–57.

    Article  Google Scholar 

  • Murray, J. D. 1989.Mathematical Biology. Biomathematics, Volume 19. Berlin: Springer.

    MATH  Google Scholar 

  • Poland, D. 1989. The effect of clustering on the Lotka-Volterra model.Physica D 35, 148–166.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, C. H. 1983. Spatial trends in Canadian Snowshoe hare,Lepus americanus, population cycles.Can. Field Naturalist 97, 151–160.

    Google Scholar 

  • Stauffer, D. 1985.Introduction to Percolation Theory. London: Taylor and Francis.

    MATH  Google Scholar 

  • Whitehead, H. and S. J. Walde. 1992. Habitat dimensionality and mean search distances of top predators: implications for ecosystem structure.Theor. Popul. Biol. 42, 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson, W. G., A. M. de Roos and E. McCauley. 1993. Spatial instabilities within the diffusive Lotka-Volterra System: individual-based simulation results.Theor. Popul. Biol. 43, 91–127.

    Article  MATH  Google Scholar 

  • Wilson, W. G. and W. G. Laidlaw. 1992. Microscopic-based fluid flow invasion simulations.J. Statist. Phys. 66, 1165–1176.

    Article  MATH  Google Scholar 

  • Wilson, W. G., W. G. Laidlaw and D. A. Coombe. 1994. Microscopic-based fluid flow invasion simulations II: mobilization and cohesion.J. Statist. Phys. 75, 1885–1195.

    Article  Google Scholar 

  • Wu, F. Y. 1982. The Potts Model.Rev. Mod. Phys. 54, 235–268.

    Article  Google Scholar 

  • Ziegler, B. P. 1977. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms.J. Theor. Biol. 67, 687–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, W.G., McCauley, E. & De Roos, A.M. Effect of dimensionality on Lotka-Volterra predator-prey dynamics: Individual based simulation results. Bltn Mathcal Biology 57, 507–526 (1995). https://doi.org/10.1007/BF02460780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460780

Keywords

Navigation