Skip to main content
Log in

Evolution in a flat fitness landscape

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple model of a population of asexually reproducing individuals, evolving in a flat fitness landscape, is defined. It is shown that the model is equivalent to a dynamical system with stochastic dynamics, the Annealed Random Map Model. Thus, it is possible to solve exactly for the genealogy statistics and for the genetic variability of the population. Fluctuations of quantities, like the average relatedness and the variability, which also take place in the limit of an infinitely large population, are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Amitrano, C., L. Peliti and M. Saber. 1988. Neutralism and adaptation in a simple model of molecular evolution.C. R. Acad. Sci. Paris, Sér. III 307, 803–806.

    Google Scholar 

  • Amitrano, C., L. Peliti and M. Saber. 1990. Population dynamics in a spin-glass model of chemical evolution.J. molec. Evol.,29, 513–525.

    Google Scholar 

  • Biebricher, C. K. 1986. Darwinian evolution of self-replicating RNA.Chemica Scripta 26B, 51–57.

    Google Scholar 

  • Demetrius, L., P. Schuster and K. Sigmund. 1985. Polynucleotide evolution and branching processes.Bull. math. Biol.,47, 239–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Derrida, B. 1980. Random-energy model—limit of a family of disordered systems.Phys. Rev. Lett. 45, 79–82.

    Article  MathSciNet  Google Scholar 

  • Derrida, B. 1981. Random-energy model—an exactly solvable model of disordered systems.Phys. Rev. B24, 2613–2626.

    Article  MathSciNet  Google Scholar 

  • Derrida, B. and D. Bessis. 1988. Statistical properties of valleys in the annealed random map model.J. Phys. A21, L509-L515.

    Article  MathSciNet  Google Scholar 

  • Derrida, B. and H. Flyvbjerg. 1987. Statistical properties of randomly broken objects and of multivalley structures in disordered systems.J. Phys. A20, 5273–5288.

    Article  MathSciNet  Google Scholar 

  • Ebeling, W. and R. Feistel. 1977. Stochastic theory of a molecular replication process with selection character.Ann. Phys. (Leipzig) 34, 81–90.

    Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster. 1988. Molecular quasi-species.J. Phys. Chem. 92, 6881–6891.

    Article  Google Scholar 

  • Flesselles, J.-M. 1989. Contribution théorique à l'étude de la relaxation dans les verres de spin. Thèse, Université Paris-Sud.

  • Flesselles, J.-M. and R. Botet. 1989. Derivation of a stretched-exponential time relaxation.J. Phys. A22, 903–909.

    Article  Google Scholar 

  • Fontana, W., W. Schnabl and P. Schuster. 1989. Physical aspects of evolutionary optimization and adaptation.Phys. Rev. A40, 3301–3321.

    Article  Google Scholar 

  • Fontana, W. and P. Schuster. 1987. A computer model of evolutionary optimization.Biophys. Chem. 26, 123–147.

    Article  Google Scholar 

  • Hofbauer, J. and K. Sigmund. 1988.The Theory of Evolution and Dynamical Systems—Mathematical Aspects of Selection. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kauffman, S. A. 1989. Adaptation on rugged fitness landscapes. InComplex Systems. SFI Studies in the Science of Complexity, D. Stein(ed.), pp. 527–617. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Kauffman, S. A. and S. Levin. 1987. Towards a general theory of adaptive walks in rugged fitness landscapes.J. theor. Biol. 128, 11–45.

    MathSciNet  Google Scholar 

  • Kimura, M. 1983.The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kimura, M. and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population.Genetics 49 725–738.

    Google Scholar 

  • Macken, C. A. and A. S. Perelson. 1989. Protein evolution in rugged fitness landscapes.Proc. natl Acad. Sci. U.S.A. 86, 6191–6195.

    Article  MathSciNet  Google Scholar 

  • Mézard, M., G. Parisi and M. A. Virasoro. 1987.Spin-Glass Theory and Beyond. Singapore: World Scientific.

    Google Scholar 

  • Nowak, M. and P. Schuster. 1989. Error thresholds of replication in finite populations.J. theor. Biol. 137, 375–395.

    Google Scholar 

  • Schuster, P. and K. Sigmund. 1985. Dynamics of evolutionary optimization.Ber. Bunsenges. phys. Chem. 89, 668–682.

    Google Scholar 

  • Schuster, P. and J. Swetina. 1988. Stationary mutant distribution and evolutionary optimization.Bull. math. Biol. 50, 635–660.

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart, F. M. 1976. Variability in the amount of heterozygosity, maintained by neutral mutations.Theor. Pop. Biol. 9, 188–201.

    Article  MATH  Google Scholar 

  • Swetina, J. and P. Schuster. 1982. Self-replication with errors—a model for polynucleotide replication.Biophys. Chem. 16, 329–345.

    Article  Google Scholar 

  • Weinberger, E. 1987. A model of natural selection that exhibits a dynamic phase transition.J. stat. Phys. 49, 1011–1028.

    Article  MathSciNet  Google Scholar 

  • Wright, S. 1937. The distribution of gene frequencies in populations.Proc. natl Acad. Sci. U.S.A. 23, 307–320.

    Article  MATH  Google Scholar 

  • Zhang, Y.-C., M. Serva and M. Polikarpov. 1990. Diffusion-reproduction processes.J. stat. Phys., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Peliti, L. Evolution in a flat fitness landscape. Bltn Mathcal Biology 53, 355–382 (1991). https://doi.org/10.1007/BF02460723

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460723

Keywords

Navigation