Skip to main content
Log in

Tumor growthin vivo and as multicellular spheroids compared by mathematical models

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In vivo volume growth of two murine tumor cell lines was compared by mathematical modeling to their volume growth as multicellular spheroids. Fourteen deterministic mathematical models were studied. For one cell line, spheroid growth could be described by a model simpler than needed for description of growthin vivo. A model that explicitly included the stimulatory role for cell-cell interactions in regulation of growth was always superior to a model that did not include such a role. The von Bertalanffy model and the logistic model could not fit the data; this result contradicted some previous literature and was found to depend on the applied least squares fitting method. By the use of a particularly designed mathematical method, qualitative differences were discriminated from quantitative differences in growth dynamics of the same cells cultivated in two different three-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bajzer, Ž. and S. Vuk-Pavlović. 1990. Quantitative aspects of autocrine regulation in tumors.CRC Crit. Rev. Oncogenesis 2, 53.

    Google Scholar 

  • Bajzer, Ž., M. Marušić and S. Vuk-Pavlović. 1994. Mathematical modeling of cellular interactions in multicellular tumor spheroids.Proceedings of World Congress of Nonlinear Analysts, Tampa, Florida, U.S.A., 19–26 August 1992. Berlin: W. de Gruyter (in press).

    Google Scholar 

  • Bertalanffy, L. von. 1941. Untersuchungen über die Gesetzlichkeit des Wachstums, VII. Stoffwechseltypen und Wachstumtypen.Biol. Zentralbl. 61, 510.

    Google Scholar 

  • Bertalanffy, L. von. 1957. Quantitative laws in metabolism and growth.Q. Rev. Biol. 32, 217.

    Article  Google Scholar 

  • Cook, R. D. and S. Weisberg. 1990. Linear and nonlinear regression. InStatistical Methodology in the Pharmacological Sciences, D. A. Berry (Ed.), p. 163. New York: Marcel Dekker.

    Google Scholar 

  • Cox, E. B., M. A. Woodbury and L. E. Myers. 1980. A new model for tumor growth analysis based on a postulated inhibitory substance.Comp. biomed. Res. 13, 437.

    Article  Google Scholar 

  • Durbin, J. and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I.Biometrika 37, 409.

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin, J. and G. S. Watson. 1951. Testing for serial correlation in least squares regression. II.Biometrika 38, 159.

    Article  MATH  MathSciNet  Google Scholar 

  • Feller, W. 1971.An Introduction to Probability Theory and its Applications. New York: Wiley.

    Google Scholar 

  • Freyer, J. P. 1988. Role of necrosis in regulating the growth saturation of multicellular spheroids.Cancer Res. 48, 2432.

    Google Scholar 

  • Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality.Phil. Trans. R. Soc. (Lond.) 36, 513.

    Google Scholar 

  • Kreyszig, E. 1970.Introductory Mathematical Statistics. New York: Wiley.

    Google Scholar 

  • Laird, A. K. 1964. Dynamics of tumor growth.Br. J. Cancer 18, 490.

    Google Scholar 

  • Marušić, M. and Ž. Bajzer. 1993. Generalized two-parameter equation of growth.J. math. Anal. Applic. 179, 446.

    Article  Google Scholar 

  • Marušić, M. and S. Vuk-Pavlović. 1993. Prediction power of mathematical models for tumor growth.J. biol. Syst. 1, 69.

    Article  Google Scholar 

  • Marušić, M., Ž. Bajzer, J. P. Freyer and S. Vuk-Pavlović. 1991. Modeling autostimulation of growth in multicellular tumor spheroids.Int. J. biomed. Comput. 29, 149.

    Article  Google Scholar 

  • Marušić, M., Ž. Bajzer, J. P. Freyer and S. Vuk-Pavlović. 1994. Analysis of growth of multicellular tumor spheroids by mathematical models.Cell Prolif. 27, 73.

    Google Scholar 

  • Mayneord, W. V. 1932. On a law of growth of Jensen's rat sarcoma.Am. J. Cancer 16, 841.

    Google Scholar 

  • Michelson, S., A. S. Glicksman and J. T. Leith. 1987. Growth in solid heterogeneous colon adenocarcinomas: comparison of simple logistical models.Cell Tiss. Kinet. 20, 343.

    Google Scholar 

  • More, J. J. 1977. The Levenberg-Marquardt algorithm: implementation and theory. InNumerical Analysis, G. A. Watson (Ed.). New York: Springer.

    Google Scholar 

  • Pearl, R. 1924.Studies in Human Biology, Baltimore: Williams & Wilkins.

    Google Scholar 

  • Piantadosi, S. 1985. A model of growth with first-order birth and death rates.Comp. biomed. Res. 18, 220.

    Article  Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1986.Numerical Recipes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Savageau, M. A. 1979. Allometric morphogenesis of complex systems: a derivation of the basic equations from first principles.Proc. natn. Acad. Sci. U.S.A. 76, 6023.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz, M. 1961. A biomathematical approach to clinical tumor growth.Cancer 14, 1272.

    Article  Google Scholar 

  • Shampine, L. F. and M. K. Gordon. 1975.Computer Solution of Ordinary Differential Equations. The Initial Value Problem. New York: Freeman.

    Google Scholar 

  • Sutherland, R. M. 1988. Cell and environment interactions in tumor microregions: the multicell spheroid model.Science 240, 177.

    Google Scholar 

  • Turner, M. E. Jr., E. L. Bradley Jr., K. A. Kirk and K. M. Pruitt. 1976. A theory of growth.Math. Biosci. 29, 367.

    Article  MATH  Google Scholar 

  • Vaidya, V. G. and F. J. Alexandro Jr. 1982. Evaluation of some mathematical models for tumor growth.Int. J. biomed. Comput. 13, 19.

    Article  MathSciNet  Google Scholar 

  • Verhulst, P. F. 1838. Notice sur la loi que la population suit dans son accroissement.Corr. Math. Phys. 10, 113.

    Google Scholar 

  • Wheldon, T. E. 1988.Mathematical Models in Cancer Research. Bristol: Adam Hilger.

    Google Scholar 

  • Wheldon, T. E., J. Kirk and W. M. Grey. 1973. Mitotic autoregulation, growth control and neoplasia.J. theor. Biol. 38, 627.

    Article  Google Scholar 

  • Winer, B. J. 1971.Statistical Principles in Experimental Design, p. 400. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanimir Vuk-Pavlovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marušic, M., Bajzer, Ž., Vuk-Pavlovic, S. et al. Tumor growthin vivo and as multicellular spheroids compared by mathematical models. Bltn Mathcal Biology 56, 617–631 (1994). https://doi.org/10.1007/BF02460714

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460714

Keywords

Navigation