Skip to main content
Log in

Positive feedback in aquatic ecosystems: The case of the microbial loop

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The description of the “microbial loop” has led to some major changes in our understanding of nutrient cycling within aquatic ecosystems. It now appears that in many settings it is not uncommon for some 50% of phytoplankton production to be diverted into microbial pathways rather than passing up to higher trophic levels. As a result the microbial loop is responsible for enhanced and rapid nutrient cycling at the very base of the food web. Since tight recycling is often associated with unstable positive feedback, we use a model to examine the possible repercussions in more detail. The model simulates the dynamics of the microbial loop and finds it to greatly affect the way in which aquatic primary production responds to nutrient pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anderson, P. and T. Fenchel. 1985. Bacterivoy by microheterotrophic flagellates in seawater samples.Limnol. Oceanogr. 30, 198–202.

    Google Scholar 

  • Azam, F., B. C. Cho, D. C. Smith and M. Simon. 1990. Bacterial cycling of matter in the pelagic zone of aquatic ecosystems. InLarge Lakes—Ecological Structure and Function. M. M. Tilzer and C. Serruya (Eds), pp. 477–488. Berlin: Springer Verlag.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water-column microbes in the sea.Mar. Ecol. Prog. Ser. 10, 257–263.

    Google Scholar 

  • Berman, T. 1990. Microbial food webs and nutrient cycling in lakes: Chaning perspectives. InLarge Lakes—Ecological Structure and Function. M. M. Tilzer and C. Serruya (Eds), pp. 511–525, Berlin: Springer Verlag.

    Google Scholar 

  • Berman, T. and T. Zohary. 1989. New approaches in the study of algal blooms. In5th Int. Symp. on Microbial Ecology, T. Haltori, Y. Ishida, Y. Moruyama, R. Morita and A. Uchida (Eds), pp. 321–325. Japan: ISME 5.

    Google Scholar 

  • Berman, T., M. Nawrocki, G. T. Taylor and D. M. Karl. 1987. Nutrient flux between bacteria, bacterivorous nanoplanktonic protists and algae.Mar. Microbial Food Webs 2, 69–81.

    Google Scholar 

  • Bianchi, T. S., C. G. Jones and M. Shachak. 1990. Positive feedback of consumer population density on resource supply.Trends Ecol. Evol. 4, 234–238.

    Article  Google Scholar 

  • Bjornsen, P. K., B. Riemann, S. J. Horsted, T. G. Nielsen and J. Pock-Sten. 1988. Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures.Limnol. Oceanogr. 33, 409–420.

    Google Scholar 

  • Bloem, J., C. Albert, M. J. B. Bar-Gilissen, T. Berman and T. E. Cappenberg. 1989.J. plank. Res. 11, 119–131.

    Google Scholar 

  • Bormann, F. H. and G. E. Likens. 1970. The nutrient cycles of an ecosystem.Sci. Am. 223, 92–101.

    Google Scholar 

  • Boucher, D. H. 1985. (Ed.)The Biology of Mutualism. London: Croom Helm.

    Google Scholar 

  • Caron, D. A., J. C. Goldman and M. R. Dennett. 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles.Hydrobiologia 159, 51–62.

    Google Scholar 

  • Cole, J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems.Ann. Rev. ecol. Syst. 13, 291–314.

    Article  Google Scholar 

  • Connell, J. H. and W. P. Sousa. 1983. On the evidence needed to judge ecological stability or persistence.Am. Nat. 121, 789–824.

    Article  Google Scholar 

  • DeAngelis, D. L. 1980. Energy flow, nutrient cycling, and ecosystem resilience.Ecology 61, 764–771.

    Article  Google Scholar 

  • DeAngelis, D. L., S. M. Bartell and A. L. Brenkert. 1989. Effects of nutrient recycling and food-chain length on resilience.Am. Nat. 134, 778–805.

    Article  Google Scholar 

  • DeAngelis, D. L., W. M. Post and C. C. Travis. 1986.Positive Feedback in Natural Systems. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Dickey, T., J. Marra and R. Smith. 1988. Bio-optical and physical moored time series. In Observations in the Pacific Ocean as part of the Global Ocean Flux Study (GOFS). Pacific Planning Report.U.S. GOFS Plan. Rep. 9, 21–29.

    Google Scholar 

  • Ducklow, H. W. 1983. Production and fate of bacteria in the oceans.BioScience 33, 494–501.

    Article  Google Scholar 

  • Ebenhoh, W. 1988. Coexistence of an unlimited number of algal species in a model ecosystem.Theoret. Pop. Biol. 34, 130–144.

    Article  MathSciNet  Google Scholar 

  • Egerton, F. N. 1973. Changing concepts of the Balance of Nature.Q. Rev. Biol. 48, 322–350.

    Article  Google Scholar 

  • Falkowski, P. G., D. Ziemann, Z. Kolber and P. K. Bienfang. 1991. Role of eddy pumping in enhancing primary production in the ocean.Nature 352, 55–58.

    Article  Google Scholar 

  • Fasham, M. J. R. 1985. Flow analysis of materials in the marine euphotic zone. InEcosystem Theory for Biological Oceanography. R. E. Ulanowicz and T. Platt (Eds)Can Bull. Fish. Aquat. Sci. 213, 139–162.

  • Fenchel, T. 1987.Ecology of Protozoa. New York: Springer-Verlag.

    Google Scholar 

  • Fenchel, T. 1988. Mar the plankton food chains.Ann. Rev. ecol. Syst. 19, 19–38.

    Article  Google Scholar 

  • Furnas, M. J. 1990.In situ growth rates of marine phytoplankton: Approaches to measurement of community and species growth rates.J. plank. Res. 12, 1117–1152.

    Google Scholar 

  • Gaedeke, A. and U. Sommer. 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity.Oecologia 71, 25–28.

    Article  Google Scholar 

  • Glover, H. E., B. B. Prezelin, L. Campbell, M. Wyman and C. Garside. 1988. A nitrate-dependentSynechococcus bloom in surface Saragasso Sea water.Nature 331, 161–163.

    Article  Google Scholar 

  • Goldman, J. C. 1984a. Conceptual role for microaggregates in pelagic waters.Bull. mar. Sci. 35, 462–476.

    Google Scholar 

  • Goldman, J. C. 1984b. Oceanic nutrient cycles. InFlows of Energy and Materials in Marine Ecosystems: Theory and Practice. M. J. R. Fasham (Ed.), pp. 137–170. New York: Plenum Press.

    Google Scholar 

  • Harris, G. P. 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management.Can. J. fish. aquat. Sci. 37, 877–900.

    Article  Google Scholar 

  • Hastings, A. 1988. Food web theory and stability.Ecology 69, 1665–1668.

    Article  Google Scholar 

  • Holling, C. S. 1973. Resilience and stability of ecological systems.Ann. Rev. ecol. Syst. 4, 1–23.

    Article  Google Scholar 

  • Holligan, P. M., R. D. Pingree and G. T. Mardell. 1985. Oceanic solitons, nutrient pulses and phytoplankton growth.Nature 314, 348–350.

    Article  Google Scholar 

  • Jenkins, W. J. 1988. Nitrate flux into the euphotic zone near Bermuda.Nature 331, 521–523.

    Article  Google Scholar 

  • Jordan, C. F., J. R. Kline and D. S. Sasscer. 1972. Relative stability of mineral cycles in forest ecosystems.Am. Nat. 106, 237–254.

    Article  Google Scholar 

  • Lohrenz, S. E., R. A. Arnone, D. A. Wiesenburg and I. P. DePalma. 1988. Satellite detection of transient enhanced primary production in the western Mediterranean Sea.Nature 335 245–247.

    Article  Google Scholar 

  • May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • May, R. M. 1976 Simple mathematical models with very complicated dynamics.Nature 261, 459–467.

    Article  Google Scholar 

  • May, R. M. 1977. Thresholds and break points in ecosystems with a multiplicity of stable states.Nature 269, 471–477.

    Article  Google Scholar 

  • May, R. M. 1982. Munualistic interactions amongst species.Nature 296, 803–804.

    Article  Google Scholar 

  • May, R. M. 1988. Levels of organization in ecology. InTowards a More Exact Ecology. P. J. Grubb and J. B. Whittaker (Eds.), Ch. 11 Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • May, R. M. and G. F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models.Am. Nat. 110, 573–599.

    Article  Google Scholar 

  • Moloney, C. L., M. O. Bergh, J. G. Field and R. C. Newell. 1986. The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation.J. plank. Res. 8, 426–445.

    Google Scholar 

  • Nunney, L. 1985. Short time delays in population models: A role in enhancing stability.Ecology 66, 1849–1858.

    Article  Google Scholar 

  • Odum, E. P. 1971.Fundamentals of Ecology, 3rd edn. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  • Pace, M. L. 1988. Bacterial mortality and the fate of bacterial production.Hydrobiologia 159, 41–50.

    Google Scholar 

  • Papoulis, A. 1977.Signal Analysis. New York: McGraw Hill.

    MATH  Google Scholar 

  • Perry, D. A., M. P. Amaranthus, J. G. Borchers, S. L. Borchers and R. E. Brainerd. 1988. Bootstrapping in ecosystems.Bioscience 39, 230–237.

    Article  Google Scholar 

  • Platt, T. and W. G. Harrison. 1985. Biogenic fluxes of carbon and oxygen in the sea.Nature 318, 55–58.

    Article  Google Scholar 

  • Pomeroy, L. R. 1974. The ocean's food web a changing paradigm.Bioscience 24, 499–504.

    Article  Google Scholar 

  • Pomeroy, L. R. and W. J. Wiebe. 1988. Energetics of microbial food webs.Hydrobiologia 159, 7–18.

    Google Scholar 

  • Reynolds, C. S. 1987. Cyanobacterial water-blooms.Adv. bot. Res. 13, 67–143.

    Article  Google Scholar 

  • Schuster, H. G. 1984.Deterministic Chaos: An Introduction. Weinheim: Physik-Verlag.

    MATH  Google Scholar 

  • Serruya, C., M. Gophen and U. Pollinger 1980. Lake Kinneret: Carbon flow patterns and ecosystem management.Arch. Hydrobiol. 88, 265–302.

    Google Scholar 

  • Sherr, E. B. and B. F. Sherr. 1991. Planktonic microbes: Tiny cells at the base of the ocean's food webs.Trends ecol. Evol. 6, 50–54.

    Article  Google Scholar 

  • Simberloff, D. S. 1982. The status of competition theory in ecology.Ann. Zool. Fenn. 19, 241–253.

    Google Scholar 

  • Steele, J. H. 1974.The Structure of Marine Ecosystems. Cambridge: Harvard University Press.

    Google Scholar 

  • Steele, J. H. 1991. Can ecological theory cross the land-sea boundary?J. theor. Biol. 153, 425–436.

    Article  Google Scholar 

  • Stone, L. 1990. Phytoplankton-bacteria-protozoa interactions: a qualitative model portraying indirect effects.Mar. Ecol. Prog. Ser. 64, 137–145.

    Google Scholar 

  • Stone, L. and A. Roberts. 1991. Conditions for a species to gain advantage from the presence of competitors.Ecology 72, 1964–1972.

    Article  Google Scholar 

  • Stone, L. and R. S. J. Weisburd. 1992. Positive feedback in aquatic ecosystems.Trends ecol. Evol. 7, 263–267.

    Article  Google Scholar 

  • Suttle, C. A., J. G. Stockner and P. J. Harrison. 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture.Can. J. fish. aquat. Sci. 44, 1768–1774.

    Google Scholar 

  • Taylor, A. H. and I. Joint. 1990. A steady-state analysis of the ‘microbial loop’ in stratified systems.Mar. Ecol. Prog. Ser. 59, 1–17.

    MATH  Google Scholar 

  • Thresher, R. E., G. P. Harris, J. S. Gunn and L. A. Clementson. 1989. Phytoplankton production pulses and episodic settlement of a temperature marine fish.Nature 341, 641–643.

    Article  Google Scholar 

  • Ulanowicz, R. E. 1984. Community measures of food networks and their possible applications. InFlows of Energy and Materials in Marine Ecosystems: Theory and Practice. M. Fasham (Ed.). New York: Plenum Press.

    Google Scholar 

  • Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen and H. Reinertsen. 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria.Limnol. Oceanogr. 34, 840–855.

    Google Scholar 

  • Vezina, A. F. and T. Platt. 1988. Food web dynamics in the ocean I. Best estimates of flow networks using inverse methods.Mar. Ecol. Prog. Ser. 42, 269–287.

    Google Scholar 

  • Weisse, T., H. M. Muller, R. M. Pinto-Coelho, A. Schweizer, D. Springmann and G. Baldringer. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake.Limnol. Oceanogr. 35, 781–794.

    Article  Google Scholar 

  • Wright, R. T. 1988. A model for short-term control of the bacterioplankton by substrate and grazing.Hydrobiologia 159, 111–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, L., Berman, T. Positive feedback in aquatic ecosystems: The case of the microbial loop. Bltn Mathcal Biology 55, 919–936 (1993). https://doi.org/10.1007/BF02460692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460692

Keywords

Navigation