Skip to main content
Log in

Stress-induced alignment of actin filaments and the mechanics of cytogel

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Experimental evidence suggests that anisotropic stress induces alignment of intracellular actin filaments. We develop a model for this phenomenon, which includes a parameter reflecting the sensitivity of the microfilament network to changes in the stress field. When applied to a uniform cell sheet at rest, the model predicts that for sufficiently large values of the sensitivity parameter, all the actin filaments will spontaneously align in a single direction. Stress alignment can also be caused by a change in external conditions, and as an example of this we apply our model to the initial response of embryonic epidermis to wounding. Our solutions in this case are able to reflect the actin cable that has been found at the wound edge in recent experiments; the cable consists of microfilaments aligned with stress at the wound boundary of the epithelium. These applications suggest that stress-induced alignment of actin filaments could play a key role in some biological systems. This is the first attempt to include the alignment phenomenon in a mechanical model of cytogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Chen, W. 1981. Mechanism of retraction of the trailing edge during fibroblast movement.J. Cell Biol. 90, 187–200.

    Article  Google Scholar 

  • Clark, R. A. F. 1989. Wound repair.Curr. Op. Cell Biol. 1, 1000–1008.

    Article  Google Scholar 

  • Franke, R. P., M. Grafe, H. Schnittler, D. Seiffge, C. Mittermayer and D. Drenckhahn. 1984. Induction of human vascular endothelial stress fibres by fluid shear stress.Nature 307, 648–649.

    Article  Google Scholar 

  • Gerhart, J. and R. Keller. 1986. Region-specific cell activities in amphibian gastrulation.Ann. Rev. Cell Biol. 2, 201–229.

    Google Scholar 

  • Harris, A. K. 1982. Traction and its relations to contraction in tissue cell locomotion. InCell Behaviour, R. Bellairs, A. Curtis and G. Dunn (Eds), pp. 109–134. Cambridge: Cambridge University Press.

    Google Scholar 

  • hergott, G. J., M. Sandig and V. I. Kalnins. 1989. Cytoskeletal organisation of migrating retinal pigment epithelial cells during wound healing in organ culture.Cell Motil. 13, 83–93.

    Article  Google Scholar 

  • Kolega, J. 1986. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture.J. Cell Biol. 102, 1400–1411.

    Article  Google Scholar 

  • Ludueña, M. A. and N. K. Wessells. 1973. Cell locomotion, nerve elongation and microfilaments.Dev. Biol. 30, 427–440.

    Article  Google Scholar 

  • Martin, P. and J. Lewis. 1991. The mechanics of embryonic skin wound healing—limb bud lesions in mouse and chick embryos. InFetal Wound Healing: a Paradigm of Tissue Repair, N. S. Adzick and M. T. Longaker (Eds), pp. 265–279. New York: Elsevier.

    Google Scholar 

  • Martin, P. and J. Lewis. 1992. Embryonic wound healing actin cables and epidermal movement. Submitted.

  • Murray, J. D., G. F. Oster and A. K. Harris. 1983. A mechanical model for mesenchymal morphogenesis.J. math. Biol. 17, 125–129.

    Article  MATH  Google Scholar 

  • Murray, J. D. and G. F. Oster. 1984a. Generation of biological pattern and form.IMA J. Math. appl. med. Biol. 1, 51–75.

    MATH  MathSciNet  Google Scholar 

  • Murray, J. D. and G. F. Oster. 1984b. Cell traction models for generating pattern and form in morphogenesis.J. math. Biol. 19, 265–279.

    MATH  MathSciNet  Google Scholar 

  • Murray, J. D., P. K. Maini and R. T. Tranquillo. 1988. Mechanochemical models for generating biological pattern and form in development.Phys. Rep. 171, 59–84.

    Article  MathSciNet  Google Scholar 

  • Odell, G. M., G. Oster, P. Alberch and B. Burnside. 1981. The mechanical basis of morphogenesis.Dev. Biol. 85 446–462.

    Article  Google Scholar 

  • Oster, G. F. 1984. On the crawling of cells.J. Embryol. exp. Morphol. 83 Suppl., 329–364.

    Google Scholar 

  • Oster, G. F. and G. M. Odell. 1984a. Mechanics of cytogels I: oscillations inPhysarum.Cell Motil. 4, 469–503.

    Article  Google Scholar 

  • Oster, G. F. and G. M. Odell 1984b. The mechanochemistry of cytogels.Physica D12, 333–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Oster, G. F., J. D. Murray and A. K. Harris. 1983. Mechanical aspects of mesenchymal morphogenesis.J. Embryol. exp. Morphol. 78, 83–125.

    Google Scholar 

  • Oster, G. F., J. D. Murray and G. M. Odell. 1985a. The formation of microvilli. InMolecular Determinants of Animal Form, G. M. Edelman (Ed.), pp. 365–384. New York: Alan R. Liss.

    Google Scholar 

  • Oster, G. F., J. D. Murray and P. K. Maini. 1985b. A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions.J. Embryol. exp. Morphol. 89, 93–112.

    Google Scholar 

  • Pender, N. and C. A. G. McCulloch. 1991. Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching.J. Cell Sci. 100, 187–193.

    Google Scholar 

  • Pereyra, V. 1979.Pasava3: an adaptive finite-difference program for first order nonlinear ordinary boundary problems. InCodes for Boundary Value Problems in Ordinary Differential Equations. B. Childs, M. Scott, J. W. Daniel, E. Denman and P. Nelson (Eds),Lecture Notes in Computer Science, Vol. 76, pp. 67–88.

  • Pollard, T. D. 1990. Actin.Curr. Op. Cell Biol. 2, 33–40.

    MathSciNet  Google Scholar 

  • Sherratt, J. A. 1992. Actin aggregation and embryonic epidermal wound healing.J. math. Biol., in press.

  • Sherratt, J. A. and J. D. Murray. 1990. Models of epidermal wound healing.Proc. r. Soc. Lond. B241, 29–36.

    Google Scholar 

  • Sherratt, J. A. and J. D. Murray. 1991. Mathematical analysis of a basic model for epidermal wound healing.J. math. Biol. 29, 389–404.

    Article  MATH  Google Scholar 

  • Sherratt, J. A. and J. D. Murray. 1992. Epidermal wound healing: a theoretical approach.Comm. theor. Biol., in press.

  • Spooner, B. S., K. M. Yamada and N. K. Wessells. 1971. Microfilaments and cell locomotion.J. Cell Biol. 49, 595–613.

    Article  Google Scholar 

  • Stopak, D., N. K. Wessells and A. K. Harris. 1985. Morphogenetic rearrangement of injected collagen in developing chicken limb buds.,Proc. natn. Acad. Sci. U.S.A. 82, 2804–2808.

    Article  Google Scholar 

  • Valberg, P. A. and D. F. Albertini. 1985. Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method.J. Cell Biol. 101, 130–140.

    Article  Google Scholar 

  • Wechezak, A. R., T. N. Wight, R. F. Viggers and L. R. Sauvage. 1989. Endothelial adherence under shear stress is dependent upon microfilament reorganisation.J. cell. Physiol. 139, 136–146.

    Article  Google Scholar 

  • Winter, G. D. 1962. Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig.Nature 193, 293–294.

    Article  Google Scholar 

  • Winter, G. D. 1972. Epidermal regeneration studied in the domestic pig. In:Epidermal Wound Healing, H. I. Maibach and D. T. Rovee (Eds), pp. 71–112. Chicago: Year Book Med Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherratt, J.A., Lewis, J. Stress-induced alignment of actin filaments and the mechanics of cytogel. Bltn Mathcal Biology 55, 637–654 (1993). https://doi.org/10.1007/BF02460654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460654

Keywords

Navigation