Skip to main content
Log in

Structural correlates of stability and resilience in strong hierarchies

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigated the structural correlates of stability and resilience in strong hierarchies, that is, systems that can be represented by a rooted tree. A simple exponential model that incorporates three variables (the total number of nodesN; the number of basal nodesn B; and the number of single links among nodesN 1) accounts for 95% of the observed variability in stability among trees in our sample population. For resilience the situation is even simpler, with about 89% of the population variation being accounted for by tree size (N). For strong hierarchies, size and shape are the principal correlates of stability, while size alone explains the major proportion of the variability in resilience among stable trees. These results suggest that reasonably accurate statistical predictions about the stability and resilience of strong hierarchies can be made from a small set of (relatively) easily measured variables, without detailed knowledge of system topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Allen, T. H. F. and T. B. Starr. 1982.Hierarchy: Perspectives for Ecological Complexity. Chicago, U.S.A.: University of Chicago Press.

    Google Scholar 

  • Austin, P. M. and B. G. Cook. 1974. Ecosystem stability: a result from an abstract simulation.J. theor. Biol. 45, 435–458.

    Article  Google Scholar 

  • Bachas, C. P. and B. A. Huberman. 1986. Complexity and the relaxation of hierarchical structures.Phys. Rev. Lett. 57, 1965–1969.

    Article  MathSciNet  Google Scholar 

  • Bachas, C. P. and B. A. Huberman. 1987. Complexity and ultradiffusion.J. Phys. A: Math. Gen. 20, 4995–5014.

    Article  MathSciNet  Google Scholar 

  • Bandelt, H.-J. and A. Dress. 1989. Weak hierarchies associated with similarity measures—an additive clustering technique.Bull. math. Biol. 51, 133–166.

    MATH  MathSciNet  Google Scholar 

  • Bonner, J. T. 1980.The Evolution of Complexity. Princeton, U.S.A.: Princeton University Press.

    Google Scholar 

  • Busacker, R. G. and T. L. Saaty. 1969.Finite Graphs and Networks: An Introduction with Applications. New York: McGraw-Hill.

    Google Scholar 

  • Ceccatto, H. A. and B. A. Huberman. 1988. The complexity of hierarchical systems.Phys. Scripta 37, 145–150.

    MATH  MathSciNet  Google Scholar 

  • Cohen, J. E., F. Briand and C. M. Newman. 1990.Community Food Webs: Data and Theory. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Gillespie, D. T. 1975.The Monte Carlo Method for Evaluating Integrals. Springfield: National Weapons Center Technical Publication 5714.

  • Hogg, T., B. A. Huberman and J. M. McGlade. 1989. The stability of ecosystems.Proc. R. Soc. Lond. B237, 43–51.

    Article  Google Scholar 

  • Huberman, B. A. (Ed) 1988.The Ecology of Computation. Amsterdam: North-Holland Publishing.

    MATH  Google Scholar 

  • Huberman, B. A. and T. Hogg. 1988. Complexity and adaptation.Physica D22, 376–384.

    MathSciNet  Google Scholar 

  • May, R. M. 1974.Stability and Complexity in Model Ecosystems. Princeton, U.S.A.: Princeton University Press.

    Google Scholar 

  • May, R. M. 1983. Ecology—the structure of food webs.Nature 301, 566–568.

    Article  Google Scholar 

  • McMorris, F. R. and R. C. Powers. 1991. Concensus weak hierarchies.Bull. math. Biol. 53, 679–684.

    Article  MATH  Google Scholar 

  • McMurtie, R. F. 1975. Determinants of stability of large, randomly-connected systems.J. theor. Biol. 40, 1–11.

    Article  Google Scholar 

  • O'Neill, R. V., D. L. DeAngelis, J. B. Waide and T. F. H. Allen. 1986.A Hierarchical Concept of Ecosystems. Princeton, U.S.A.: Princeton University Press.

    Google Scholar 

  • Pattee, H. 1973.Hierarchy Theory: The Challenge of Complex Systems. New York: George Braziller.

    Google Scholar 

  • Pimm, S. L. 1984. The complexity and stability of ecosystems.Nature 307, 321–326.

    Article  Google Scholar 

  • Pimm, S. L., J. H. Lawton and J. E. Cohen. 1991. Food web patterns and their consequences.Nature 350, 669–674.

    Article  Google Scholar 

  • Rammal, R., G. Toulouse and M. A. Virasoro. 1986. Ultrametricity for physicists.Rev. Mod. Phys. 58, 765–788.

    Article  MathSciNet  Google Scholar 

  • Simon, H. 1962a.The Sciences of the Artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  • Simon, H. 1962b. The architecture of complexity.Proc. Am. Phil. Soc. 106, 476–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Findlay, S., Zheng, L. Structural correlates of stability and resilience in strong hierarchies. Bltn Mathcal Biology 55, 543–560 (1993). https://doi.org/10.1007/BF02460650

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460650

Keywords

Navigation