Skip to main content
Log in

Correlations of rates of insulin release from islets and plateau fractions for β-cells

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pancreatic β-cells in intact islets of Langerhans perfused with various glucose concentrations exhibit periodic bursting electrical activity (BEA) consisting of active and silent phases. The fraction of the time spent in the active phase is called the plateau fraction and appears to be strongly correlated with the rate of release of insulin from islets as glucose concentration is varied. Here this correlation is quantified and a theoretical development is presented in detail. Experimental rates of insulin release are correlated with “effective” plateau fractions over a range of glucose concentrations. There are a number of different models for BEA in pancreatic β-cells and a method is developed here to quantify the dependence of a glucose dependent parameter on glucose concentration. As an example, the plateau fractions computed from the Sherman-Rinzel-Keizer model are matched with experimental plateau fractions to obtain a relationship between the model's glucose-dependent parameter, β, and glucose concentration. Knowledge of the relationships between β and glucose concentration and between experimental measurements of rates of insulin release and plateau fractions permits the determination of theoretical rates of insulin release from the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ashcroft, S. J. H., J. M. Bassett and P. J. Randle. 1972. Insulin secretion mechanisms and glucose metabolism in isolated islets.Diabetes (Suppl. 2)21, 538–545.

    Google Scholar 

  • Ashcroft, F. and P. Rorsman. 1989. Electrophysiology of the pancreatic β-cell.Prog. Biophys. Mol. Biol. 54, 87–143.

    Article  Google Scholar 

  • Atwater, I., A. Goncalves, A. Herchuelz, P. Lebrun, W. J. Malaisse, E. Rojas and A. Scott. 1984. Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets.J. Physiol. (Lond.) 348, 615–627.

    Google Scholar 

  • Atwater, I., B. Ribalet and E. Rojas. 1978a. Cyclic changes in potential and resistance of the β-cell membrane induced by gluclose in islets of Langerhans from mouse.J. Physiol. (Lond.) 278, 117–139.

    Google Scholar 

  • Atwater, I., B. Ribalet and E. Rojas. 1978b. Mouse pancreatic β-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization.J. Physiol. (Lond.) 288, 561–574.

    Google Scholar 

  • Atwater, I., C. M. Dawson, B. Ribalet and E. Rojas. 1978. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell.J. Physiol. (Lond.) 288, 575–588.

    Google Scholar 

  • Atwater, I., C. M. Dawson, A. Scott, G. Eddelstone and E. Rojas. 1980. The nature of the oscillatory behaviour in electrical activity from pancreatic β-cellHorm. and Metab. Res. (Suppl.)10, 100–107.

    Google Scholar 

  • Beigelman, M., B. Ribalet and I. Atwater. 1977. Electrical activity of mouse pancreatic beta-cells: II. Effects of glucose and arginine.J. Physiol. (Paris) 73, 201–217.

    Google Scholar 

  • Bokvist, K., P. Rorsman and P. A. Smith 1990. Block of ATP-regulated and Ca2+-activated K+ channels in mouse pancreatic β-cells by external tetraethylammonium and quinine.J. Physiol. (Lond.) 423, 327–342.

    Google Scholar 

  • Chay, T. R. and J. Keizer. 1983. Minimal model for membrane oscillations in the pancreatic β-cell.Biophys. J. 42, 181–189.

    Google Scholar 

  • Cook, D. L. 1984. Electrical pacemaker mechanisms of pancreatic islet cells.Federation Proc. 43, 2368–2372.

    Google Scholar 

  • Cook, D. L., L. S. Satin and W. Hopkins. 1991. Pancreatic β-cells are bursting, but how?Trends in Neurosci. 14, 411–414.

    Article  Google Scholar 

  • Dean, P. M. and E. K. Matthews. 1970a. Glucose-induced electrical activity in pancreatic islet cells.J. Physiol. (Lond.) 210, 255–264.

    Google Scholar 

  • Dean, P. M. and E. K. Matthews. 1970b. Electrical activity in pancreatic islet cells: effects of ions.J. Physiol. (Lond.) 210, 265–275.

    Google Scholar 

  • de Vries, G., R. M. Miura and M. Pernarowski. 1994. Analysis of models of pancreatic β-cells exhibiting temporal pattern formations. InPattern Formation: Symmetry Methods and Applications, J. Chadam, M. Golubitsky, W. Langford and B. Wetton (Eds). Providence: American Mathematical Society.

    Google Scholar 

  • Fatherazi, S. and D. L. Cook. 1991. Specificity of tetraethylammonium and quinine for three K channels in insulin-secreting cells.J. Membrane Biol. 120, 105–114.

    Article  Google Scholar 

  • Gembal, M., P. Gilon and J. Henquin. 1992. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells.J. Clin. Invest. 89, 1288–1295.

    Article  Google Scholar 

  • Gilon, P., R. M. Shepherd and J. Henquin. 1993. Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidenced in single pancreatic islets.J. biol. Chem. 268, 22,265–22,268.

    Google Scholar 

  • Henquin, J. 1990a. Glucose-induced electrical activity in β-cells, feedback control of ATP-sensitive K+ channels by Ca2+.Diabetes 39, 1457–1460.

    Google Scholar 

  • Henquin, J. 1990b. Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic β-cells.Pflügers Arch 416, 568–572.

    Article  Google Scholar 

  • Henquin, J. C. and H. P. Meissner. 1984. Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane-potential of mouse pancreatic β-cells.J. Physiol. (Lond.) 351, 595–612.

    Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (Lond.) 117, 500–544.

    Google Scholar 

  • Hopkins, W., L. S. Satin and D. L. Cook. 1991. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic β-cells.J. Membrane Biol. 119, 229–239.

    Article  Google Scholar 

  • Keizer, J. and P. Smolen. 1991. Bursting electrical activity in pancreatic β cells caused by Ca+-and voltage-inactivated Ca2+ channels.Proc. natn. Acad. Sci. U.S.A. 88, 3897–3901.

    Article  Google Scholar 

  • Meissner, H. P. and M. Preissler. 1979. Glucose-induced changes in the membrane potential of pancreatic B cells: their significance for the regulation of insulin release. InTreatment of Early Diabetes, R. A. Camerini-Davalos and B. Hanover (Eds), pp. 97–107. New York: Plenum.

    Google Scholar 

  • Meissner, H. P. and M. Preissler. 1980. Ionic mechanisms of the glucose-induced membrane potential changes in β-cells.Horm. and Metab. Res. (Suppl.)10, 91–99.

    Google Scholar 

  • Meissner, H. P. and H. Schmelz. 1974. Membrane potential of beta-cells in pancreatic islets.Pflüegers Arch. 351, 195–206.

    Article  Google Scholar 

  • Ozawa, S. and O. Sand. 1986. Electrophysiology of endocrine cells.Physiol. Rev. 66, 887–952.

    Google Scholar 

  • Pernarowski, M., R. M. Miura and J. Kevorkian. 1991. The Sherman-Rinzel-Keizer model for bursting electrical activity in the pancreatic β-cell. InDifferential Equation Models in Population Dynamics and Physiology, S. Busenberg and M. Martelli (Eds), pp. 34–53. Berlin: Springer-Verlag.

    Google Scholar 

  • Pernarowski, M., R. M. Miura and J. Kevorkian. 1992. Perturbation techniques for models of bursting electrical activity in pancreatic β-cells.SIAM J. Appl. Math. 52, 1627–1650.

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel, J., T. R. Chay, D. Himmel and I. Atwater. 1986. Prediction of the glucose-induced changes in membrane ionic permeability and cytosolic Ca2+ by mathematical modelling.Adv. exp. Med. Biol. 21, 247–263.

    Google Scholar 

  • Rorsman, P. and G. Trube, 1986. Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions.J. Physiol. (Lond.) 374, 531–550.

    Google Scholar 

  • Rosario, L. M., I. Atwater and E. Rojas. 1985. Membrane potential measurements in islets of Langerhans from ob/ob obese mice suggest an alteration in [Ca]2+-activated K+ permeability.Q. J. exp. Physiol. 70, 137–150.

    Google Scholar 

  • Santos, R. M., L. M. Rosario, A. Nadal, J. Garcia-Sancho B. Soria and B. Soria and M. Valdeolmillos., 1991. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets.Pflügers Arch. 418, 417–422.

    Article  Google Scholar 

  • Satin, L. S. and D. L. Cook. 1988. Evidence for two calcium currents in insulin-secreting cells.Pflüegers Arch. 411, 401–409.

    Article  Google Scholar 

  • Satin, L. S. and D. L. Cook. 1989. Calcium current inactivation in insulin-secreting cells is mediated by calcium influx and membrane depolarization.Pflügers Arch. 414, 1–10.

    Article  Google Scholar 

  • Scott, A. M., I. Atwater and E. Rojas. 1981. A method for the simultaneous, measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans.Diabetologia 21, 470–475.

    Article  Google Scholar 

  • Sherman, A. and J. Rinzel. 1992. Rhythmogenic effects of weak electrotonic coupling in neuronal models.Proc. natn. Acad. Sci. U.S.A. 89, 2471–2474.

    Article  Google Scholar 

  • Sherman, A., J. Rinzel and J. Keizer. 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing.Biophys. J. 54, 411–425.

    Article  Google Scholar 

  • Smolen, P. and J. Keizer. 1992. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cells.J. Membrane Biol. 127, 9–19.

    Article  Google Scholar 

  • Strumwasser, F. 1968. Membrane and intracellular mechanism governing endogenous, activity in neurons. InPhysiological and Biochemical Aspects of Nervous Integration, F. D. Carlson (Ed.), pp. 329–342. Englewood Cliffs: Printice-Hall.

    Google Scholar 

  • Valdeolmillos, M., R. M. Santos, D. Contreras, B. Soria and L. M. Rosario. 1989. Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans.FEBS Lett. 259, 19–23.

    Article  Google Scholar 

  • Wollheim, C. B. and W. F. Pralong. 1990. Cytoplasmic calcium ions and other signalling events in insulin secretion.Biochem. Soc. Trans. 18, 111–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, R.M., Pernarowski, M. Correlations of rates of insulin release from islets and plateau fractions for β-cells. Bltn Mathcal Biology 57, 229–246 (1995). https://doi.org/10.1007/BF02460617

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460617

Keywords

Navigation