Skip to main content
Log in

Perturbation of a circadian rhythm by single and periodic signals and its mathematical simulation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Adaptive characteristics of circadian rhythm are based on their capacity to be synchronized by external signals, particularly light signals. The effect of both single and periodic light signals on the electroretinogram (ERG) circadian rhythm in crayfish is studied. In a previous work (Lara-Aparicioet al., Bull math. Biol. 55, 97–110, 1993) we developed a mathematical model simulating the emergence of the ERG circadian rhythm during the ontogeny of the crayfish. In the present work we have tested the familiar wave-shift behaviour of an oscillator with a single limit cycle. Two new facts, not present in a simpler model, now appear, which simulate adequately the experimental results, i.e. the presence of a transient stage and the shape of the perturbed wave which changes according to the characteristics of the external light signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aschoff, J. 1960. Exogenous and endogenous components in circadian rhythms.Cold Spring Harbor Symp. Quant. Biol. 25, 11–28.

    Google Scholar 

  • Aschoff, J. 1965. Response curves in circadian periodicity. InCircadian Clocks, pp. 95–111. Amsterdam: North-Holland.

    Google Scholar 

  • De Coursey, P. J. 1972. LD ratios and the entrainment of circadian activity in a nocturanl and a dirunal rodent.J. comp. Physiol. 78, 223–235.

    Google Scholar 

  • Enright, J. T. 1965. Synchronization and ranges of entrainment. InCircadian Clocks, pp. 112–124. Amsterdam: North-Holland.

    Google Scholar 

  • Faniul-Moles, M. L., E. Moreno-Sáenz, N. Villalobos-Hiriart and B. Fuentes-Pardo. 1987. ERG circadian rhythm in the course of ontogeny in crayfish.Comp. Biochem. Physiol.,88A, 213–219.

    Article  Google Scholar 

  • Fanjul-Moles, M. L., M. Miranda-Anaya and B. Fuentes-Pardo. 1992. Effect of monochromatic light upon the ERG circadian rhythm during ontogeny in crayfish (Procambarus clarki).Comp. Biochem. Physiol.,102A, 99–106.

    Article  Google Scholar 

  • Fuentes-Pardo, B. and M. C. García. 1979. Effect of light deprivation on the neurohumoral activity of the visual system of the crayfish.Comp. Biochem. Physiol. 64A, 649–655.

    Google Scholar 

  • Fuentes-Pardo, B. and J. Ramos-Carvajal. 1983. The phase response curve of electroretinographic circadian rhythm of crayfish.Comp. Biochem. Physiol.,74A, 711–714.

    Article  Google Scholar 

  • Fuentes-Pardo, B., M. L. Fanjul-Moles and E. Moreno-Sáenz. 1992. Synchronization by light of the ERG circadian rhythm during ontogeny in the crayfish.J. interdiscipl. Cycle Res 23, 81–91.

    Google Scholar 

  • Hernández-Falcón, J., E. Moreno-Sáenz, J. M. Farías and B. Fuentes-Pardo. 1987. Role of the sinus gland on crayfish circadian rhythmicity. I. Pseudopupil circadian rhythm.Comp. Biochem Physiol. 87A, 111–118.

    Article  Google Scholar 

  • Kalmus, H. and L. A. Wigglesworth. 1960. Shock excited systems as models for biological rhythms.Cold Spring Harbor Symp. Quant. Biol.,25, 211–216.

    Google Scholar 

  • Kawato, M. 1981. Transient and steady state phase response curves of limit cycles oscillators.J. math. Biol. 12, 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinholz, L. H., 1934. Eye-stalk hormone and the movement of distal retinal pigment inPlaemonetes.Proc. natn. Acad. Sci. U.S.A. 20, 659–661.

    Article  Google Scholar 

  • Klotter, K. 1960. Theoretical analysis of some biological models.Cold Spring Harbor Symp. Quant. Biol. 25, 189–196.

    Google Scholar 

  • Lara-Aparicio, M., S. López de Medrano, B. Fuentes-Pardo and E. Moreno-Sáenz. 1993. A qualitative mathematical model of the ontogeny of a circadian rhythm in crayfish.Bull. math. Biol. 55, 97–110.

    Article  MATH  Google Scholar 

  • Lewis, R. D. and D. S. Saunders. 1987. A damped circadian oscillator model for an insect photoperiodic clock. I. Description of the model based on a feedback control system.J. theor. Biol. 128, 47–59.

    MathSciNet  Google Scholar 

  • Moreno-Sáenz, E., J. Hernández-Falcón and B. Fuentes-Pardo. 1987. Role of the sinus gland on crayfish circadian rhythmicity. II. ERG circadian rhythm.Comp. Biochem. Physiol. 87A, 119–125.

    Article  Google Scholar 

  • Moreno-Sáenz, E., B. Fuentes-Pardo and J. Hernández-Falcón, 1992. Photoentrainment of the circadian rhythm in the electroretinogram of the crayfish and its dependence on the sinus gland.J. exp. Zool.,264, 144–152.

    Article  Google Scholar 

  • Pavlidis, T. 1967. A mahematical model for the light affected system in theDrosophila eclosion rhythm.Bull. math. Biophys. 29, 291–310.

    Google Scholar 

  • Peterson, E. L. 1980. A limit cycle interpretation of a mosquito circadian osillator.J. theor. Biol. 84, 281–310.

    Google Scholar 

  • Pittendrigh, C. S. 1966a. The circadian oscillation inDrosophila pseudoobscura pupae: A model for the photoperiodic clock.Z. Pflanzenphysiol.,54, 275–307.

    Google Scholar 

  • Pittendrigh, C. S. and S. Daan. 1976. A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency.J. comp. Physiol,106, 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S. and S. Daan. 1976b. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock.J. comp. Physiol. 106, 291–331.

    Article  Google Scholar 

  • Winfree, A. T. 1980.The Geometry of Biological Time. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes-Pardo, B., Lara-Aparicio, M. & de Medrano, S.L. Perturbation of a circadian rhythm by single and periodic signals and its mathematical simulation. Bltn Mathcal Biology 57, 175–189 (1995). https://doi.org/10.1007/BF02460614

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460614

Keywords

Navigation