Skip to main content
Log in

A dynamic numerical method for models of renal tubules

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We show that an explicit method for solving hyperbolic partial differential equations can be applied to a model of a renal tubule to obtain both dynamic and steady-state solutions. Appropriate implementation of this method eliminates numerical instability arising from reversal of intratubular flow direction. To obtain second-order convergence in space and time, we employ the recently developed ENO (Essentially Non-Oscillatory) methodology. We present examples of computed flows and concentration profiles in representative model contexts. Finally, we indicate briefly how model tubules may be coupled to construct large-scale simulations of the renal counterflow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Chandhoke, P. S. and G. M. Saidel. 1981. Mathematical model of mass transport throughout the kidney: effects of nephron heterogeneity and tubular-vascular organization.Ann. biomed. Engng 9, 263–301.

    Article  Google Scholar 

  • Crank, J. 1956.The Mathematics of Diffusion. London: Oxford University Press.

    Google Scholar 

  • Cussler, E. L. 1984.Diffusion: Mass Transfer in Fluid Systems. New York, NY: Cambridge University Press.

    Google Scholar 

  • Harten, A. and S. Osher. 1987. Uniformly high-order accurate nonoscillatory schemes.SIAM J. Numer. Anal. 24, 279–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Harten, A., B. Engquist, S. Osher and S. Chakravarthy. 1986. Some results on uniformly high-order accurate essentially nonoscillatory schemes.Appl. Numer. Math. 2, 347–377.

    Article  MATH  MathSciNet  Google Scholar 

  • Harten, A., B. Engquist, S. Osher and S. Chakravarthy. 1987. Uniformly high order accurate essentially non-oscillatory schemes, III.J. comput. Phys. 71, 231–303.

    Article  MATH  MathSciNet  Google Scholar 

  • Knepper, M. A., R. A. Danielson, G. M. Saidel and R. S. Post. 1977. Quantitative analysis of renal medullary anatomy in rats and rabbits.Kidney Int. 12, 313–323.

    Google Scholar 

  • Layton, H. E. 1990. Urea transport in a distributed loop model of the urine-concentrating mechanism.Am. J. Physiol. 258, F1110-F1124.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and M. A. Knepper. In review. A dynamic numerical method for models of the urine concentrating mechanism.SIAM J. Appl. Math.

  • Lory, P. 1980. Numerical solution of a kidney model by multiple shooting.Math. Biosci. 50, 117–128.

    Article  MATH  Google Scholar 

  • Lory, P. 1987. Effectiveness of a salt transport cascade in the renal medulla: computer simulations.Am. J. Physiol. 252, F1095-F1102.

    Google Scholar 

  • Meija, R. and J. L. Stephenson. 1979. Numerical solution of multinephron kidney equations.J. comput. Phys. 32, 235–246.

    Article  Google Scholar 

  • Meija, R. and J. L. Stephenson. 1984. Solution of a multinephron, multisolute model of the mammalian kidney by Newton and continuation methods.Math. Biosci. 68, 279–298.

    Article  Google Scholar 

  • Moore, L. C. 1979. Urea and NaCl transport in thin Henle's loops: dynamic response in water diuresis-antidiuresis transition, pp. 51–62. Dissertation, University of Southern California.

  • Moore, L. C. and D. J. Marsh. 1980. How descending limb of Henle's loop permeability affects hypertonic urine formation.Am. J. Physiol. 239, F57-F71.

    Google Scholar 

  • Mulder, W., S. Osher and J. A. Sethian. 1992. Computing interface motion in compressible gas dynamics.J. comput. Phys. 100, 209–228.

    Article  MATH  MathSciNet  Google Scholar 

  • Pitman, E. B., H. E. Layton and L. C. Moore. 1994. Numerical simulation of propagating concentration profiles in renal tubules.Bull. math. Biol. 56, 567–586.

    Article  MATH  Google Scholar 

  • Schultz, S. G. 1980.Basic Principles of Membrane Transport. New York, NY: Cambridge University Press.

    Google Scholar 

  • Stephenson, J. L. 1972. Concentration of urine in a central core model of the renal counterflow system.Kidney Int. 2, 85–94.

    Google Scholar 

  • Stephenson, J. L. 1992. Urinary concentration and dilution: models. In:Handbook of Physiology: Section 8:Renal Physiology. E. E. Windhager (Ed.), pp. 1349–1408. New York: Oxford University Press.

    Google Scholar 

  • Stephenson, J. L., R. P. Tewarson and R. Mejia. 1974. Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system.Proc. natn. Acad. Sci. U.S.A. 71, 1618–1622.

    Article  MATH  Google Scholar 

  • Stephenson, J. L., Y. Zhang, A. Eftekhari and R. Tewarson. 1987. Electrolyte transport in a central core model of the renal medulla.Am. J. Physiol. 253, F982-F997.

    Google Scholar 

  • Stephenson, J. L., Y. Zhang and R. Tewarson. 1989. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla.Am. J. Physiol. 257, F399-F413.

    Google Scholar 

  • Strang, G. 1963. Accurate partial difference methods: I. Linear Cauchy problems.Arch. Rat. Mech. Anal. 12, 392–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Tewarson, R. P., J. L. Stephenson, M. Garcia and Y. Zhang. 1985. On the solution of equations for renal counterflow models.Comput. Biol. Med. 15, 287–295.

    Article  Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1986. Automatic derivative evaluation in solving boundary value problems: the renal medulla.Am. J. Physiol. 251, F358-F378.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1987. Passive, one-dimensional counter-current models do not simulate hypertonic urine formation.Am. J. Physiol. 253, F1020-F1030.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1991a. Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results.Am. J. Physiol. 260, F368-F383.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1991b. Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results.Am. J. Physiol. 260, F384-F394.

    Google Scholar 

  • Wexler, A. S. and D. J. Marsh. 1991. Numerical methods for three-dimensional models of the urine concentrating mechanism.Appl. math. Comput. 26, 237–244.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layton, H.E., Pitman, E.B. A dynamic numerical method for models of renal tubules. Bltn Mathcal Biology 56, 547–565 (1994). https://doi.org/10.1007/BF02460470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460470

Keywords

Navigation