Skip to main content
Log in

The effect of solution non-ideality on membrane transport in three-dimensional models of the renal concentrating mechanism

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Previous models of the renal concentrating mechanism employ ideal approximations of solution thermodynamics for membrane transport calculation. In three-dimensional models of the renal medulla, predicted urine concentrations reach levels where there idealized approximations begin to break down. In this paper we derive equations that govern membrane transport for non-dilute solutions and use these equations in a three-dimensional model of the concentrating mechanism. New numerical methods were employed that are more stable than those employed previously. Compared to ideal solution models, the urea non-ideality tends to increase predicted osmolarities, whereas NaCl non-ideality decreases predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ascher, U. and G. Bader. 1986. Stability of collocation at Gaussian points.SIAM J. Numer. Anal. 23, 412–422.

    Article  MATH  MathSciNet  Google Scholar 

  • Ascher, U., R. M. Mattheij and R. Russell. 1988.Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Englewood Cliffs NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bader, G. and U. Ascher. 1987. A new basis implementation for a mixed order boundary value ODE solver.SIAM J. Sci. Stat. Comput. 8, 483–500.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonventre, J. V. and C. Lechene. 1980. Renal medullary concentrating process: an integrative hypothesis.Am. J. Physiol. 239, F578-F588.

    Google Scholar 

  • Bower, V. E. and R. A. Robinson. 1963. The thermodynamics of the ternary system: urea-sodium chloride-water at 25°C.J. Phys. Chem. 67, 1524–1527.

    Google Scholar 

  • Chandhoke, P. S. and G. M. Saidel. 1983. Mathematical model of mass transport throughout the kidney: effects of nephron heterogeneity and tubularvascular organization.Ann. biomed. Engng 9, 263–301.

    Article  Google Scholar 

  • Hamer, W. J. and Y. C. Wu. 1972. Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25°C.J. Phys. Chem. Ref. Data 1, 1047–1099.

    Article  Google Scholar 

  • Han, J. S., K. A. Thompson, C. L. Chou and M. A. Knepper. 1992. Experimental tests of three-dimensional model of urinary concentrating mechanism.J. Am. Soc. Nephrol. 2, 1677–1688.

    Google Scholar 

  • Harned, H. S. and B. B. Owen. 1958.The Physical Chemistry of Electrolytic Solutions. New York: Reinhold.

    Google Scholar 

  • Imai, M., J. Taniguchi and K. Tabei. 1987. Function of thin loops of Henle.Kidney Int. 31, 565–579.

    Google Scholar 

  • Katchalsky, A. and P. F. Curran. 1967.Nonequilibrium Thermodynamics in Biophysics. Cambridge, MA Harvard University Press.

    Google Scholar 

  • Kedem, O. and A. Katchalsky. 1958. Thermodynamics analysis of the permeability of biological membranes to non-electrolytes.Biochem. Biophys. Acta. 27, 229.

    Article  Google Scholar 

  • Kelman, R. B., D. J. Marsh and H. C. Howard. 1966. Nonmonotonicity of solutions of linear differential equations occurring in the theory of urine formation.SIAM Rev. 8, 463–479.

    Article  MATH  MathSciNet  Google Scholar 

  • Knepper, M. A., J. M. Sands and C. L. Chou. 1989. Independence of urea and water transport in rat inner medullary collecting duct.Am. J. Physiol. 256, F610-F621.

    Google Scholar 

  • Kokko, J. P. and F. C. Rector, Jr. 1972. Countercurrent multiplication system without active transport in inner medulla.Kidney Int. 2, 214–223.

    Google Scholar 

  • Koushanpour, E. and W. Kriz. 1986.Renal Physiology: Principles, Structure, and Function. New York, Springer.

    Google Scholar 

  • Kriz, W. 1981. Structural organization of the renal medulla: comparative and functional aspects.Am. J. Physiol. 241, R3-R16.

    Google Scholar 

  • Kriz, W. 1983. Structural organization of the renal medullary counterflow system.Fed. Prod. Fedn Am. Socs exp. Biol. 42, 2379–2385.

    Google Scholar 

  • Lakshminarayanaiah, N. 1984.Equations of Membrane Biophysics. Orlando, FL: Academic Press.

    Google Scholar 

  • Lobo, M. M. 1989.Handbook of Electrolyte Solutions (Part B): Sodium Chloride-Aqueous Solutions at 25°C, pp. 1636–1676. New York, NY: Elsevier.

    Google Scholar 

  • Lory, P. 1987. Effectiveness of a salt transport cascade in the renal meddulla: computer simulations.Am. J. Physiol. 252, F1095-F1102.

    Google Scholar 

  • Marsh, D. J. 1983. Computer simulations of renal countercurrent systems.Fed. Proc. Fedn Am. Socs exp. Biol. 42, 2398–2404.

    Google Scholar 

  • Mejia, R. and J. L. Stephenson. 1979. Numerical solution of multinephron kidney equations.J. comput. Phys. 32, 235–246.

    Article  MATH  Google Scholar 

  • Siezak, A., B. Turczynski and Z. Nawrat. 1989. Modification of the Kedem-Katchalsky-Zelman model-equations of the transmembrane transport.J. Non-Equilib. Thermodyn. 14, 205–218.

    Article  Google Scholar 

  • Stephenson, J. L. 1966. Concentration in renal counterflow systems.Biophys. J. 6, 539–551.

    Article  Google Scholar 

  • Stephenson, J. L. 1972. Concentration of the urine in a central core model of the counterflow system.Kidney Int. 2, 85–94.

    Google Scholar 

  • Stephenson, J. L. 1987. Models of the urinary concentrating mechanism.Kidney Int. 31, 648–661.

    Google Scholar 

  • Stephenson, J. L. and J. F. Jen. 1990. Do osmolytes help to drive countercurrent multiplication in thin limbs of Henle's loops?Kidney Int. 37, 572.

    Google Scholar 

  • Stokes, R. H. 1965. Tracer diffusion in binary solutions subject to a dimerization equilibrium.J. Phys. Chem. 69, 4012–4017.

    Google Scholar 

  • Weinstein, A. M. 1986. An equation for flow in the renal proximal tubule.Bull. math. Biol. 48, 29–57.

    Article  MATH  Google Scholar 

  • Wexler, A. S. 1987. Automatic evaluation of derivatives.Appl. math. Comp. 24, 19–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Wexler, A. S. 1991. Numerical methods for three-dimensional models of the urine concentrating mechanism.Appl. math. Comp. 45, 219–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh 1987. Passive, one dimensional countercurrent models do not simulate hypertonic urine formation.Am. J. Physiol. 253, F1020-F1030.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1991a. Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results.Am. J. Physiol. 260, F368-F383.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh. 1991b. Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity analysis.Am. J. Physiol. 260, F384-F394.

    Google Scholar 

  • Wolf, A. V. 1966.Aqueous Solutions and Body Fluids: Their Concentrative Properties and Conversion Tables. New York: Harper & Row.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wexler, A.S. & Marsh, D.J. The effect of solution non-ideality on membrane transport in three-dimensional models of the renal concentrating mechanism. Bltn Mathcal Biology 56, 515–546 (1994). https://doi.org/10.1007/BF02460469

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460469

Keywords

Navigation