Skip to main content
Log in

A dynamic model of renal blood flow autoregulation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situationin vivo where as large number of individual nephrons act in parallel, each simulation was performed with 125 parallel versions of the model. The key parameters of the 125 versions of the model were chosen randomly within the physiological range. None of the constituent models, i.e., the TGF and the myogenic, could alone reproduce the experimental observations. However, in combination they reproduced most of the features of the various transfer functions calculated from the experimental data. The major discrepancy was the presence of a bimodal distribution of the admittance phase in the simulations. This is not consistent with most of the experimental data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aukland, K. and A. H. Øien. 1987. Renal autoregulation: models combining tubuloglomerular feedback and myogenic response.Am. J. Physiol. 252, F768-F784.

    Google Scholar 

  • Başar, E. and C. Weiss. 1968. Analyse des Frequenzganges druckinduzierter Änderungen des Strömungswiderstandes isolierter Rattennieren.Pflügers Arch. ges. Physiol. 304, 121–135.

    Article  Google Scholar 

  • Bendat, J. A. and A. G. Piersol. 1971.Random Data: Analysis and Measurement Procedures. New York: John Wiley.

    MATH  Google Scholar 

  • Daniels, F. H., W. J. Arendshorst and R. G. Roberds. 1990. Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats.Am. J. Physiol. 258, F1479-F1489.

    Google Scholar 

  • Davis, M. J. and P. J. Sikes. 1990. Myogenic responses of isolated arterioles: test for a ratesensitive mechanism.Am. J. Physiol. 259, H1890-H1990.

    Google Scholar 

  • Edwards, R. M. 1983. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels.Am. J. Physiol. 244, F526-F534.

    Google Scholar 

  • Eggert, P., V. Theiman and C. Weiss. 1979. Periodic changes of blood flow in thein vivo rat kidney.Pflügers Arch. ges. Physiol. 382, 63–66.

    Article  Google Scholar 

  • Grände, P.-O., J. Lundvall and S. Mellander. 1977. Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control.Acta physiol. Scand. 99, 432–447.

    Google Scholar 

  • Grände, P.-O. and S. Mellander. 1978. Characteristics of static and dynamic regulatory mechanisms in myogenic microvascular control.Acta physiol. Scand. 102, 231–245.

    Google Scholar 

  • Hander, D. R., R. Gilbert and J. H. Lombard. 1987. Vascular smooth muscle cell depolarization and activation in renal arteries on elevation of transmural pressure.Am. J. Physiol. 253, F778-F781.

    Google Scholar 

  • Holstein-Rathlou, N.-H. 1992. Dynamic aspects of the tubuloglomerular feedback mechanism.Dan. Med. Bull. 39, 134–154.

    Google Scholar 

  • Holstein-Rathlou, N.-H. and P. P. Leyssac. 1987. Oscillations in proximal intratubular pressure: a mathematical model.Am. J. Physiol. 252, F560-F572.

    Google Scholar 

  • Holstein-Rathlou, N.-H. and D. J. Marsh 1990. A dynamic model of the tubuloglomerular feedback mechanism.Am. J. Physiol. 258, F1448-F1459.

    Google Scholar 

  • Holstein-Rathlou, N.-H., A. W. Wagner and D. J. Marsh. 1991. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats.Am. J. Physiol. 260, F53-F68.

    Google Scholar 

  • Kenner, T. and K. Ono. 1971. The low frequency input impedance of the renal artery.Pflügers Arch. ges. Physiol. 324, 155–164.

    Article  Google Scholar 

  • Kuo, L., M. J. Davis and W. M. Chilian. 1992. Endothelial modulation of arterial tone.NIPS,7, 5–9.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore. 1991. Bifurcation analysis of TGF-mediated oscillations in SNGFR.Am. J. Physiol. 261, F904-F919.

    Google Scholar 

  • Moore, L. C., J. Schnermann and S. Yarimizu. 1979. Feedback mediation of SNGFR autoregulation in hydropenic and DOCA- and salt-loaded rats.Am. J. Physiol. 237, F63-F74.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Taukolsky and W. T. Vettering. 1986.Numerical Recipes. New York: Cambridge University Press.

    Google Scholar 

  • Sakai, T., E. Hallman and D. J. Marsh. 1986. Frequency domain analysis of renal autoregulation in the rat.Am. J. Physiol. 250, F364-F373.

    Google Scholar 

  • Sakai, T., D. A. Craig, A. S. Wexler and D. J. Marsh. 1986. Fluid waves in renal tubules.Biophys. J. 50, 805–813.

    Article  Google Scholar 

  • Ursino, M. and G. Fabbri. 1992. Role of the myogenic mechanism in the genesis of microvascular oscillations (vasomotion): analysis with a mathematical model.Microvasc. Res. 43, 156–177.

    Article  Google Scholar 

  • Young, D. K. and D. J. Marsh. 1981. Pulse wave propagation in rat renal tubules: implications for GFR autoregulation.Am. J. Physiol. 240, F446-F458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holstein-Rathlou, N.H., Marsh, D.J. A dynamic model of renal blood flow autoregulation. Bltn Mathcal Biology 56, 411–429 (1994). https://doi.org/10.1007/BF02460465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460465

Keywords

Navigation