Skip to main content
Log in

A qualitative mathematical model of the ontogeny of a circadian rhythm in crayfish

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Based on experimental work on the ontogeny of the electroretinogram circadian rhythm in crayfish, we present a mathematical model simulating changes in both frequency and amplitude of the electroretinogram oscillation during several developmental stages until shortly before the adult age. Simultaneously, we propose a hypothetical oscillation in the hormonal release whose frequency is imposed on the electroretinogram oscillation. The model consists of two coupled nonlinear oscillators in which a dynamical response is obtained mainly through an Andronov-Hopf bifurcation. Through the construction of the model, a biological hypothesis about the essential elements underlying the ERG circadian rhythm and their interrelations is formulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramowitz, A. A. 1937. The chromatophorotropic hormone of the crustacea: standarization, properties and physiology of the eye-stalk glands.Biol. Bull. 72, 344–365.

    Google Scholar 

  • Arnold, V. I. 1983.Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der mathematischen Wissenschaften 250, 334 pp. Berlin: Springer-Verlag.

    Google Scholar 

  • Cartwright, M. L. 1948. Forced oscillations in nearly sinusoidal systems.J. Inst. Elect. Engrs III 95, 88–96.

    MathSciNet  Google Scholar 

  • Daan, S. and C. Berde. 1978. Two coupled oscillators: Simulations of the circadian pacemaker in mammalian activity rhythms.J. theor. Biol. 70, 297–313.

    Article  MathSciNet  Google Scholar 

  • Fanjul-Moles, M. L., E. Moreno-Sáenz, N. Villalobos-Hiriart and B. Fuentes-Pardo. 1987. ERG circadian rhythm in the course of ontogeny in crayfish.Comp. Biochem. Physiol. 88A, 213–219.

    Article  Google Scholar 

  • Fuentes-Pardo, B., J. Hernández-Falcón and J. Noguerón and I. Noguerón. 1984. Effect of external level of calcium upon the photoreceptor potential of crayfish along the twenty-four hour cycle.Comp. Biochem. Physiol. 78A, 723–727.

    Article  Google Scholar 

  • Fuentes-Pardo, B. and V. Inclán-Rubio. 1987. Caudal photoreceptors synchronize the circadian rhythms in crayfish I. Synchronization of ERG and locomotor circadian rhythms.Comp. Biochem. Physiol. 86A, 523–527.

    Article  Google Scholar 

  • Fuentes-Pardo, B., M. L. Fanjul-Moles and E. Moreno-Sáenz. 1992. Synchronization by light of the ERG circadian rhythm during ontogeny of the crayfish.J. Interdisc. Cycle Res., in press.

  • Gorgels-Kallen, J. L. and C. E. M. Voorter. 1985. The secretory dynamics of the CHH-producing cell group in the eyestalk of the crayfish,Astacus leptodactylus, in the course of the day/night cycle.Cell Tissue Res. 241, 361–366.

    Article  Google Scholar 

  • Hafner, G. S., T. Tokarski and G. Hammond-Soltis. 1982. Development of the crayfish retina: A light and electron microscopic study.J. Morphol. 173, 101–118.

    Article  Google Scholar 

  • Hernández-Falcón, J., E. Moreno-Sáenz, J. M. Farías and B. Fuentes-Pardo. 1987. Role of the sinus gland on crayfish circadian rhythmicity. I. Pseudopupil circadian rhythm.Comp. Biochem. Physiol. 87A, 111–118.

    Article  Google Scholar 

  • Johnsson, A. and H. G. Karlsson. 1972. A feedback model for biological rhythms. I. Mathematical description and basic properties of the model.J. theor. Biol. 36, 153–174.

    Article  Google Scholar 

  • Kalmus, H. and L. A. Wigglesworth. 1960. Shock excited systems as models for biological rhythms.Cold Spring Harbor Symp. Quant. Biol. 25, 211–216.

    Google Scholar 

  • Kawato, M. 1981. Transient and steady state phase response curves of limit cycles oscillators.J. math. Biol. 12, 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Kawato, M. and R. Suzuki. 1980. Two coupled neural oscillators as model of the circadian pacemaker.J. theor. Biol. 86, 547–575.

    Article  MathSciNet  Google Scholar 

  • Kleinholz, L. H. 1934. Eye-stalk hormone and the movement of distal retinal pigment inPalaemonetes.Proc. natn. Acad. Sci. 20, 659–661.

    Article  Google Scholar 

  • Kopell, N. 1983. Forced and coupled oscillators in biological applications.Proceedings of the International Congress of Mathematicians, Warszawa, pp. 16–24.

  • Lewis, R. D. and D. S. Saunders. 1987. A damped circadian oscillator model for an insect photoperiodic clock. I. Description of the model based on a feedback control system.J. theor. Biol. 128, 47–59.

    MathSciNet  Google Scholar 

  • Moreno, A. P. 1988. Modulación humoral de las uniones comunicantes. Ph. D. Thesis, CINVESTAV, IPN, México.

    Google Scholar 

  • Moreno-Sáenz, E., J. Hernández-Falcón and B. Fuentes-Pardo. 1987. Role of the sinus gland on crayfish circadian rhythmicity. II. ERG circadian rhythm.Comp. Biochem. Physiol. 87A, 119–125.

    Article  Google Scholar 

  • Moreno-Sáenz, E., B. Fuentes-Pardo and J. Hernández-Falcón. (1992). Photoentrainment of the ERG circadian rhythm in crayfish and its dependence on the sinus gland.

  • Naka, K. and M. Kuwabara. 1959. Two components from the compound eye of the crayfish.J. exp. Biol. 36, 51–61.

    Google Scholar 

  • Pavlidis, T. 1968. A mathematical model for the temperature effects on circadian rhythms.J. theor. Biol. 18, 210–221.

    Article  Google Scholar 

  • Pavlidis, T. 1973.Biological Oscillators: Their Mathematical Analysis. New York: Academic Press.

    Google Scholar 

  • Peterson, E. L. 1980. A limit cycle interpretation of a mosquito circadian oscillator.J. theor. Biol. 84, 281–310.

    Google Scholar 

  • Rand, R. H. and P. J. Holmes. 1980. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators.J. Non-Linear Mech. 15, 387–399.

    Article  MATH  MathSciNet  Google Scholar 

  • Sánchez, J. A. and B. Fuentes-Pardo. 1977. Circadian rhythm in the amplitude of the electroretinogram in the isolated eyestalk of the crayfish.Comp. Biochem. Physiol. 56A, 601–605.

    Article  Google Scholar 

  • Shishkova, M. A. 1973. Study of one system of differential equations with small parameter at higher derivative.Dokl. Acad. Sci. U.S.S.R. 209, 576–579.

    MATH  Google Scholar 

  • Smith, R. 1948. The role of the sinus gland in retinal pigment migration in grapsoid crabs.Biol. Bull. 75, 169–185.

    Google Scholar 

  • Strogatz, S. H. 1978. Human sleep and circadian rhythms: a simple model based on two coupled oscillators.J. math. Biol. 25, 327–347.

    Article  MathSciNet  Google Scholar 

  • von Bertalanffy, L. 1968.General System Theory, Development, Applications. New York: G. Brazillier.

    Google Scholar 

  • Welsh, J. H. 1939. The action of the eye-stalk extracts on retinal pigment migration in the crayfishCambarus bartoni.Biol. Bull. 77, 119–125.

    Google Scholar 

  • Winfree, A. T. 1967. Biological rhythms and the behavior of populations of coupled oscillators.J. theor. Biol. 16, 15–42.

    Article  Google Scholar 

  • Winfree, A. T. 1980.The Geometry of Biological Time. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara-Aparicio, M., de Medrano, S.L., Fuentes-Pardo, B. et al. A qualitative mathematical model of the ontogeny of a circadian rhythm in crayfish. Bltn Mathcal Biology 55, 97–110 (1993). https://doi.org/10.1007/BF02460296

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460296

Keywords

Navigation