Skip to main content
Log in

Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A classical predator-prey model is considered in this paper with reference to the case of periodically varying parameters. Six elementary seasonality mechanisms are identified and analysed in detail by means of a continuation technique producing complete bifurcation diagrams. The results show that each elementary mechanism can give rise to multiple attractors and that catastrophic transitions can occur when suitable parameters are slightly changed. Moreover, the two classical routes to chaos, namely, torus destruction and cascade of period doublings, are numerically detected. Since in the case of constant parameters the model cannot have multiple attractors, catastrophes and chaos, the results support the conjecture that seasons can very easily give rise to complex populations dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Afrajmovich, V. S., V. I. Arnold, Yu. S. Il'ashenko and P. Shilnikov. 1991. Bifurcation theory InDynamical Systems, Vol. 5, V. I. Arnold (Ed.),Encyclopaedia of Mathematical Sciences, New York: Springer Verlag.

    Google Scholar 

  • Allen, J. C. 1989. Are natural enemy populations chaotic? InEstimation and Analysis of Insect Populations, Lecture Notes in Statistics, Vol. 55, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), pp. 190–205, New York: Springer Verlag.

    Google Scholar 

  • Arnold, V. I., 1982.Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer Verlag.

    Google Scholar 

  • Aron, J. L. and I. B. Schwartz. 1984. Seasonality and period-doubling bifurcations in an epidemic model.J. theor. Biol. 110, 665–679.

    MathSciNet  Google Scholar 

  • Bajaj, A. K. 1986. Resonant parametric perturbations of the Hopf bifurcation.J. Math. Anal. Appl.,115, 214–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Bardi, M. 1981. Predator-prey models in periodically fluctuating environments.J. math. Biol. 12, 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Butler, G. J., S. B. Hsu and P. Waltman. 1985. A mathematical model of the chemostat with periodic washout rate.SIAM J. appl. Math. 45, 435–449.

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, K. S. 1981. Uniquencess of a limit cycle for a predator-prey system.SIAM J. math. Anal. 12, 541–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. 1977. Periodic time-dependent predator-prey systems.SIAM J. appl. Math. 32, 82–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. 1980. Two species competition in a periodic environment.J. math. Biol. 10, 384–400.

    Article  MathSciNet  Google Scholar 

  • Cushing, J. M. 1982. Periodic Kolmogorov systems.SIAM J. math. Anal.,13, 811–827.

    Article  MATH  MathSciNet  Google Scholar 

  • De Mottoni, P. and A. Schiaffino. 1981. Competition systems with periodic coeficients: a geometric approach.J. math. Biol. 11, 319–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Gambaudo, J. M. 1985. Perturbation of a Hopf bifurcation by an external time-periodic forcing.J. Diff. Eqns 57, 172–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J. and P. Holmes. 1986.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer Verlag.

    Google Scholar 

  • Gutierrez, E. and H. Almiral. 1989. Temporal properties of some biological systems and their fractal attractors.Bull. math. Biol. 51, 785–800.

    Article  Google Scholar 

  • Hastings, A. and T. Powell. 1991. Chaos in a three species food chain.Ecology 72, 896–903.

    Article  Google Scholar 

  • Hogeweg, P. and B. Hesper. 1978. Interactive instruction on population interactions.Comput. Biol. Med. 8, 319–327.

    Article  Google Scholar 

  • Holling, C. S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation.Mem. Entomol. Soc. Can. 45, 5–60.

    Google Scholar 

  • Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos in forced Lotka-Volterra model.Prog. theor. Phys. 71, 930–937.

    Article  MATH  MathSciNet  Google Scholar 

  • Kath, W. L. 1981. Resonance in periodically perturbed Hopf bifurcation.Stud. Appl. Math. 65, 95–112.

    MATH  MathSciNet  Google Scholar 

  • Khibnik, A. I. 1990a. LINLBF: A program for continuation and bifurcation analysis of equilibria up to condimension three. InContinuation and Bifurcations: Numerical Techniques and Applications, D. Roose, B. de Dier and A. Spence (Eds.), pp. 283–296. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Khibnik, A. I. 1990b. Numerical methods in bifurcation analysis of dynamical systems: parameter continuation approach. InMathematics and Modelling, Yu. G. Zarhin and A. D. Bazykin (Eds), pp. 162–197. Pushchino: Center of Biological Research of the U.S.S.R. Academy of Sciences (in Russian).

    Google Scholar 

  • Kot, M. and W. M. Schaffer. 1984. The effects of seasonality on discrete models of population growth.Theor. pop. Biol. 26, 340–360.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot, M., W. M. Schaffer, G. L. Trutty, D. J. Grasser and L. F. Olsen. 1988. Changing criteria for imposing orders.Ecol. Model. 43, 75–110.

    Article  Google Scholar 

  • Kot, M., G. S. Sayler and T. W. Schultz. 1992. Complex dynamics in a model microbial system.Bull. math. Biol. 54, 619–648.

    Article  MATH  Google Scholar 

  • Kuznetsov, Yu. A. and S. Rinaldi. 1991. Numerical analysis of the flip bifurcation of maps.Appl. math. Comp. 43, 231–236.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuznetsov, Yu. A., S. Muratori and S. Rinaldi. 1992.Bifurcations and chaos in a periodic predator-prey model. Int. J. Bifurcation Chaos 2, in press.

  • Lancaster, P. and M. Tismenetsky. 1985.The Theory of Matrices. San Diego: Academic Press.

    Google Scholar 

  • Lauwerier, H. A. and J. A. J. Metz. 1986. Hopf bifurcation in host-parasitoid models.IMA J. Math. appl. Med. Biol. 3, 191–210.

    MATH  MathSciNet  Google Scholar 

  • May, R. M. 1972. Limit cycles in predator-prey communities.Science 17, 900–902.

    Google Scholar 

  • May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos.Science 186, 645–647.

    Google Scholar 

  • Metz, J. A. J. and F. H. D. van Batenburg. 1985. Holling's “hungry mantid” model for the invertebrate functional response considered as a Markov process. Part I: the full model and some of its limits.J. math. Biol. 22, 209–238.

    MATH  MathSciNet  Google Scholar 

  • Namachchivaya, S. N. and S. T. Ariaratnam. 1987. Periodically perturbed Hopf bifurcation.SIAM J. appl. Math.,47, 15–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Namba, T. 1986. Bifurcation phenomena appearing in the Lotka-Volterra competition equation: a numerical study.Math. Biosci. 81, 191–212.

    Article  MATH  MathSciNet  Google Scholar 

  • Olsen, L. F., G. L. Truty and W. M. Schaffer. 1988. Oscillations and chaos in epidemic: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark.Theor. pop. Biol. 33, 344–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Robertson, D. R., C. W. Petersen and J. D. Brawn. 1990. Lunar reproductive cycles of benthic-broading reef fishes: reflections of larval biology or adult biology?Ecol. Monogr. 60, 311–329.

    Article  Google Scholar 

  • Rosenblat, S. and D. S. Cohen. 1981. Periodically perturbed bifurcation—II Hopf bifurcation.Stud. appl. Math. 64, 143–175.

    MATH  MathSciNet  Google Scholar 

  • Schaffer, W. M. 1984. Stretching and folding in Lynx fur returns: evidence for a strange attractor in nature?Am. Nat. 124, 798–820.

    Article  Google Scholar 

  • Schaffer, W. M. 1988. Perceiving order in the chaos of nature. InEvolution of Life Histories of Mammals, M. S. Boyce (Ed.), pp. 313–350. New Haven: Yale University Press.

    Google Scholar 

  • Scheffer, M. 1990. Should we expect strange attractors behind plankton dynamics and if so, should we bother? Ph.D. Thesis, University of Utrecht, The Netherlands (to be published inJ. Plankton Res.).

    Google Scholar 

  • Schwartz, I. B. and H. L. Smith. 1983. Infinite subharmonic bifurcation in an SEIR epidemic model.J. math. Biol. 18, 233–253.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H. L. 1981. Competitive coexistence in an oscillating chemostat.SIAM J. appl. Math. 40, 498–522.

    Article  MATH  MathSciNet  Google Scholar 

  • Sugihara, G. and R. M. May. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature 344, 734–741.

    Article  Google Scholar 

  • Toro, M. and J. Aracil. 1988. Quanlitative analysis of system dynamics ecological models.Syst. Dyn. Rev. 4, 56–80.

    Google Scholar 

  • Verhulst, P. F. 1845. Recherches mathématiques sur la loi d'accroissement de la population.Mem. Acad. r. Belg.,18, 1–38 (in French).

    Google Scholar 

  • Wrzosek, D. M. 1990. Limit cycles in predator-prey models.Math. Biosci. 98, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldi, S., Muratori, S. & Kuznetsov, Y. Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bltn Mathcal Biology 55, 15–35 (1993). https://doi.org/10.1007/BF02460293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460293

Keywords

Navigation