Skip to main content
Log in

Intrinsic time scaling in survival analysis: Application to biological populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A method of dimensionless time-scaling based on extrinsic expectation of life at birth but intrinsic to a system generating a survival distribution is introduced. Such scaling allows the survival fraction function and its associated mortality function to serve as Green's functions for their generalized equivalents. i.e. a “population” function and a “death” function. The analytical mechanics of utilizing these concepts are formulated, applied to the classical Gompertz and Weibull survival models, and discussed with respect to biological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Carey, J. R., P. Liedo, D. Orozco and J. W. Vaupel. 1992. Slowing of mortality rates at older ages in large medfly cohorts.Science 258, 457–461.

    Google Scholar 

  • Curtsinger, J. W., H. H. Fukui, D. R. Townsend and J. W. Vaupel. 1992. Demography of genotypes: Failure of the limited life-span paradigm inDrosophila melanogaster.Science 258, 461–463.

    Google Scholar 

  • Davis, P. J. 1965. Gamma function and related functions. InHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun (Eds), pp. 253–293. New York: Dover Publications, Inc.

    Google Scholar 

  • Eakin, T. 1992. An intrinsic time scaling for survival analyses of biological populations. UT-CHPC Technical Report Series, University of Texas, Austin # CHPC TR-1992-0009.

  • Eakin, T., R. Shouman, Y. Qi, G. Liu and M. Witten. 1992. Issues of parametric estimation in multiparametric gerontologic survival models. UT-CHPC Technical Report Series, University of Texas, Austin # CHPC TR-1992-0002.

  • Eakin, T. and M. Witten. 1993. Intrinsic prolate rectangularity in transition regions of survival curves: How square is the survival curve of a given species? UT-CHPC Technical Report Series, University of Texas, Austin # CHPC TR-1993-0006.

  • Gompertz, B. 1820. A sketch on the analysis and the notation applicable to the value of life contingencies.Phil. Trans. Roy. Soc. 110, 214–294.

    Google Scholar 

  • Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies.Phil. Trans. Roy. Soc. 115, 513–585.

    Google Scholar 

  • Gompertz, B. 1862. A supplement to two papers published in the transactions of the Royal Society, “On the science connected with human mortality”, the one published in 1820 and the other in 1825.Phil. Trans. Roy. Soc. 52, 511–559.

    Google Scholar 

  • Iwasaki, K., C. A. Gleiser, E. J. Masoro, C. A. McMahan, E. J. Seo and B. P. Yu. 1988a. The influence of dietary protein source in longevity and age-related disease processes of Fischer rats.J. Gerontol. Biol. Sci. 43, B5-B12.

    Google Scholar 

  • Iwasaki, K., C. A. Gleiser, E. J. Masoro, C. A. McMahan, E. J. Seo and B. P. Yu. 1988b. Influence of the restriction of individual dietary components on longevity and age related disease of Fischer rats: The fat component and the mineral component.J. Gerontol. Biol. Sci. 43, B13-B21.

    Google Scholar 

  • Izmaylov, D. M., L. K. Obukhova, O. V. Okladnova and A. P. Akifyev. 1993a. Phenomenon of life span instability inDrosophila melanogaster: I. Nonrandom origin of life span variations in successive generations.Expl. Gerontol. 28, 169–180.

    Article  Google Scholar 

  • Izmaylov, D. M., L. K. Obukhova, O. V. Okladnova and A. P. Akifyev. 1993b. Phenomenon of life span instability inDrosophila melanogaster: II. Change in rhythm of natural variations of life span after single exposure to γ-irradiation.Expl. Gerontol. 28, 180–194.

    Google Scholar 

  • Johnson, T. E. 1990. Increased life-span ofage-1 mutants inCaenorhabditis elegans and lower Gompertz rate of aging.Science 249, 908–912.

    Google Scholar 

  • Kenyon, C., J. Chang, G. Gensch, A. Rudner and R. Tabtiang. 1993. AC. elegans mutant that lives twice as long as wild type.Nature 366, 461–464.

    Article  Google Scholar 

  • Lin, C. C. and L. A. Segel. 1988.Mathematics Applied to Deterministic Problems in the Natural Sciences. Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Liu, G., R. Shouman, Y. Qi, T. Eakin and M. Witten. 1992. GAIA Project. Access and submission to the multispecies survival database. UT-CHPC Technical Report Series. University of Texas Austin # CHPC TR-1992-0012.

  • McKendrick, A. G. 1926. Application of mathematics to medical problems.Proc. Edin. Math. Soc. 44, 98–130.

    Article  Google Scholar 

  • Metz, J. A. J. and O. Diekmann. 1986. Age dependence. InThe Dynamics of Physiologically Structured Populations, J. A. J. Metz and O. Diekmann (Eds), pp. 136–184. New York: Springer-Verlag.

    Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. 1992.Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Shimokawa, I., Y. Higami, G. B. Hubbard, C. A. McMahan, E. J. Masoro and B. P. Yu. 1993. Diet and the suitability of male Fischer 344 rat as a model for aging research.J. Gerontol. Biol. Sci. 48, B27-B32.

    Google Scholar 

  • Shouman, R. and M. Witten. 1993. Survival estimates and sample size: What can we conclude? UT-CHPC Technical Report Series, University of Texas, Austin # CHPC TR-1993-0005.

  • Slater, L. J. 1965. Confluent hypergeometric functions. InHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun (Eds), pp. 503–535. New York: Dover Publications, Inc.

    Google Scholar 

  • van der Laan, C. G. and N. M. Temme. 1984.Calculations of Special Functions: The gamma function, the exponential integrals and error-like functions. Amsterdam: Mathematisch Centrum.

    Google Scholar 

  • Weibull, W. 1951. A statistical distribution of wide applicability.J. Appl. Mechanics 18, 293–297.

    MATH  Google Scholar 

  • Witten, M. 1985. Predicting maximum lifespan and other lifespan variables in lifespan studies: Some useable reslts and formulae.The Gerontologist 25, 215.

    Google Scholar 

  • Witten, M. 1988. A return to time, cells, systems, and aging: V. Further thoughts on Gompertzian survival dynamics—the geriatric years.Mechanism of Ageing and Development 46, 175–200.

    Article  Google Scholar 

  • Witten, M. 1989. Quantifying the concepts of rate and acceleration/deceleration of aging.Growth, Development and Aging 53, 7–16.

    Google Scholar 

  • Witten, M. 1992. Might stochasticity and sampling variation be a possible explanation for variation in clonal population survival curves. UT-CHPC Technical Report Series. University of Texas, Austin # CHPC TR-1992-0006.

  • Yu, B. P., E. J. Masoro, I. Murata, H. A. Bertrand and F. T. Lynd. 1982. Lifespan study of SPF Fischer 344 male rats fedad libitum or restricted diets: longevity, growth, lean body mass and disease.J. Gerontol. 37, 130–141.

    Google Scholar 

  • Yu, B. P., E. J. Masoro and C. A. McMahan. 1985. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics.J. Gerontol. 40, 657–670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eakin, T. Intrinsic time scaling in survival analysis: Application to biological populations. Bltn Mathcal Biology 56, 1121–1141 (1994). https://doi.org/10.1007/BF02460289

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460289

Keywords

Navigation