Skip to main content
Log in

A mathematical approach to semantic network development

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Beginning from the notion of semantic network structure, we develop a quantitative description of how much can be learned by an animal whose developmental programme is a set of co-acting epigenetic rules. In the model considered, the activity of the rules regulates the size, connectivity and innate information content of the semantic network. The network itself is associated with a behavioral repertoire. The modeling approach shows how to begin accounting for the effects of both genetic and environmental information, in a manner that quantifies the roles of specific epigenetic rules for psychological development. In previous models the Shannon-Weaver information contentI of a semantic network follows power lawsIN ξ, withN the number of interrelated concept elements in the network and ξ a scaling exponent labeling a universality class of semantic networks. Our calculations provide evidence that epigenetic rules of the type considered, involving both innate and learned semantic network components, sustain a new universality class for which ξ=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anderson, J. R. and G. H. Bower. 1973.Human Associative Memory. New York: John Wiley.

    Google Scholar 

  • Berwick, R. C. 1983. “Locality Principles and the Acquisition of Syntactic Knowledge.” Ph.D. thesis, department of Electrical Engineering and Computer Science, MIT.

  • Brainerd, C. J. (Ed.) 1983.Recent Advances in Cognitive-Developmental Theory. New York, Springer-Verlag.

    Google Scholar 

  • Bremermann, H. J. 1963. “Limits of genetic control.”IEEE Trans. Milit. Electron. MIL7, 200–205.

    Article  Google Scholar 

  • Brillouin, L. 1962.Science and Information Theory. New York: Academic Press.

    MATH  Google Scholar 

  • Chomsky, N. 1980.Rules and Representations. New York: Columbia University Press.

    Google Scholar 

  • Collins, A. M. and E. F. Loftus. 1975. “A Spreading-activation Theory of Semantic Processing.”Psychol. Rev. 82, 407–428.

    Article  Google Scholar 

  • Conrad, C. 1972. “Cognitive Economy in Semantic Memory.”J. exp. Psychol. 92, 149–154.

    Article  Google Scholar 

  • Estes, W. K. 1982.Models of Learning, Memory, and Choice: Selected Papers. New York: Praeger.

    Google Scholar 

  • Firestone, M. P., R. de Levie and S. K. Rangarajan. “On One-dimensional Nucleation and Growth of ‘Living’ Polymers. I. Homogeneous Nucleation.”J. theor. Biol. 104, 535–552.

  • Keil, F. C. 1981. “Constraints on Knowledge and Cognitive Development.”Psychol. Rev. 88, 197–227.

    Article  Google Scholar 

  • Lindsay, P. H. and D. A. Norman. 1977.Human Information Processing: An Introduction to Psychology, 2nd edn. New York: Academic Press.

    Google Scholar 

  • Lumsden, C. J. 1983. “Gene-culture linkages and the developing mind.” InRecent Advances in Cognitive-developmental Theory, C. J. Brainerd (Ed.), pp. 123–166. New York: Springer-Verlag.

    Google Scholar 

  • — and E. O. Wilson. 1981.Genes, Mind and Culture: The Coevolutionary Process. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • — and —. 1983.Promethean Fire: Reflections on the Origin of Mind. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Majid, I., N. Jan, A. Coniglio and H. E. Stanley. 1984. “Kinetic Growth Walk: A New Model for Linear Polymers.”Phys. Rev. Lett. 52, 1257–1260.

    Article  Google Scholar 

  • Mayoh, B. H. 1974. “Multidimensional Lindenmeyer Systems.” InL Systems. Lecture Notes in Computer Science, G. Rozenberg and A. Saloma (Eds), pp. 302–326. New York: Springer-Verlag.

    Google Scholar 

  • Meakin, P. and H. E. Stanley. 1983. “Spectral Dimension for the Diffusion-limited Aggregation Model of Colloid Growth.”Phys. Rev. Lett. 51, 157–1460.

    Google Scholar 

  • Medin, D. L. and E. E. Smith. 1984. “Concepts and Concept Formation.”A. Rev. Psychol. 35, 113–138.

    Article  Google Scholar 

  • Nagl, M. 1976. “Graph Rewriting Systems and their Application in Biology.” InMathematical Models in Medicine.Lecture Notes in Biomathematics, J. Bergeret al. (Eds), Vol. 11, pp. 135–156. New York: Springer-Verlag.

    Google Scholar 

  • Odian, G. 1981.Principles of Polymerization. New York: John Wiley.

    Google Scholar 

  • Quillian, M. R. 1969. “The Teachable Language Comprehender: A Simulation Program and Theory of Language.”Communs Ass. comput. Mach. 12, 459–476.

    Google Scholar 

  • Rangarajan, S. K. and R. de Levie. 1983. “On One-dimensional Nucleation and Growth of ‘Living’ Polymers. II. Growth at Constant Monomer Concentration.”J. theor. Biol. 104, 553–570.

    Article  Google Scholar 

  • Savitch, W. J. 1976. “Computational Complexity of Developmental Programs.” InAutomata, Languages, and Development, A. Lindenmeyer and G. Rosenberg (Eds), pp. 283–291. Amsterdam: North Holland.

    Google Scholar 

  • Schaeffer, B. and R. Wallace. 1969. “Semantic Similarity and the Comparison of Word Meanings.”J. exp. Psychol. 82, 343–346.

    Article  Google Scholar 

  • — and —. 1970. “The Comparison of World Meanings.”J. exp. Psychol. 86, 144–152.

    Article  Google Scholar 

  • Shepher, J. 1971. “Mate Selection among Second-generation Kibbutz Adolescents and Adults: Incest Avoidance and Negative Imprinting.”Archs sexual Behav.1, 293–307.

    Article  Google Scholar 

  • Sowa, J. F. 1984.Conceptual Structures. Reading, Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  • Tulving, E. 1972. “Episodic and Semantic Memory.” InOrganization of Memory, E. Tulving and W. Donaldson (Eds). New York: Academic Press.

    Google Scholar 

  • Volkenstein, M. V. 1963.Configuration Statistics of Polymeric Chains. New York: John Wiley.

    Google Scholar 

  • Wexler, K. and P. K. Culicover. 1980.Formal Principles of Language Acquisition. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Wickelgren, W. A. 1979.Cognitive Psychology. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Wilkins, A. J. 1971. “Conjoint Frequency, Category Size, and Categorization Time.”J. verb. Learn. verb. Behav. 10, 382–385.

    Article  Google Scholar 

  • Wilson, K. V. N. 1980.From Associations to Structure: The Course of Cognition. New York: North Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masui, S., Lumsden, C.J. A mathematical approach to semantic network development. Bltn Mathcal Biology 47, 629–650 (1985). https://doi.org/10.1007/BF02460130

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460130

Keywords

Navigation