Skip to main content
Log in

Hierarchical behavior in fit dynamical systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a class of differentiable dynamical systems that fulfill a criterion of adaptation, or beingfit. The adaptation criterion is found to be sufficient for the existence of hierarchical behavior in these systems, once they become complex. Commutative diagram methods are used to show that under reasonable conditions the hierarchical behavior takes the form of a closed dynamics of aggregate variables. This dynamics characterizes the system functions as a whole. Existence conditions for the aggregate dynamics are obtained, together with their differential form and their connections to the original system description. The results indicate that evolutionary processes are likely to produce systems that are hierarchically organized in term of their function as well as their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Alexander, R. M. 1982.Optima for Animals, London: Edward Arnold.

    Google Scholar 

  • Allen, T. F. H. and T. B. Starr. 1982.Hierarchy: Perspectives for Ecological Complexity. Chicago: University of Chicago Press.

    Google Scholar 

  • Arbib, M. A. and E. G. Manes, 1975.Arrows, Structures, and Functors: The Categorical Imperative. New York: Academic Press.

    Google Scholar 

  • Auger, P. 1983. “Hierarchically Organized Populations: Interactions between Individual, Population, and Ecosystem Levels.”Mathl Biosci. 65, 269–289.

    Article  MATH  Google Scholar 

  • Boorman, S. A. and P. R. Levitt. 1973. “Group Selection on the Boundary of a Stable Population.”Theoret. Popul. Biol. 4, 85–128.

    Article  MATH  Google Scholar 

  • Bryson, A. and Y. C. Ho. 1969.Applied Optimal Control, Waltham, Massachusetts: Blaisdell.

    Google Scholar 

  • Cottrell, A. 1977. “Emergent Properties of Complex Systems.” InThe Encyclopedia of Ignorance, R. Duncan and M. Weston-Smith (Eds), pp. 129–135. New York: Pergamon Press.

    Google Scholar 

  • Courtois, P. J. 1977.Decomposability: Queueing and Computer System Applications. New York: Academic Press.

    Google Scholar 

  • Coxson, P. G. 1984. “Lumpability and Observability of Linear Systems.”J. Mathl Analysis Applic. 99, 435–446.

    Article  MATH  MathSciNet  Google Scholar 

  • Darwin, C. 1964. (1857).On the Origin of Species: A Facsimile of the First Edition. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Demetrius, L. 1977. “Macroscopic Parameters and Ecological Systems.”Mathl Biosci. 36, 15–23.

    Article  Google Scholar 

  • Dresden, M. 1974. “Reflections on Fundamentality and Complexity.” InPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra (Eds), pp. 132–166. Boston: Reidel.

    Google Scholar 

  • Eshel, I. 1972. “On the Neighborhood Effect and the Evolution of Altruistic Traits.”Theoret. Popul. Biol.,3, 258–277.

    Article  MATH  MathSciNet  Google Scholar 

  • Gortz, R. 1978. “A Connection Between Deterministic Motion and the Steady-state Probability Distribution.”Physica 90A, 360–363.

    Google Scholar 

  • Gould, S. J. 1982. “Darwinism and the Expansion of Evolutionary Theory.”Science 216, 380–387.

    Google Scholar 

  • Haake, F. 1973. “Statistical Treatment of Open Systems by Generalized Master Equations.”Springer Tracts in Modern Physics 66, 98–168.

    Google Scholar 

  • Haken, H. 1977.Synergetics. New York: Springer.

    Google Scholar 

  • Hamilton, W. D. 1964. “The Genetical Evolution of Social Behavior.” I, II.J. theor. Biol. 7, 1–52.

    Article  Google Scholar 

  • Ho, M.-W. and P. T. Saunders (Eds). 1984.Beyond Neo-Darwinsim: An Introduction to the New Evolutionary Paradigm, New York: Academic Press.

    Google Scholar 

  • Khinchin, A. I. 1949.Mathematical Foundations of Statistical Mechanics. New York: Dover.

    Google Scholar 

  • Krebs, J. R. and R. H. McCleery. 1984. “Optimization in Behavioral Ecology.” InBehavioural Ecology: An Evolutionary Approach, J. R. Krebs and N. B. Davies (Eds), pp. 91–121. Sunderland, Massachusetts: Sinauer.

    Google Scholar 

  • Kurland, J. A. 1980. “Kin Selection Theory: A Review and Selective Critique.”Ethol. Sociobiol. 1, 255–274.

    Article  Google Scholar 

  • Levins, R. 1970. “Extinction.”Ann. N.Y. Acad. Sci. 231, 123–138.

    Google Scholar 

  • Lumsden, C. J. 1982. “The Social Regulation of Physical Caste: the Superorganism Revived.”J. theor. Biol. 95, 749–781.

    Article  MathSciNet  Google Scholar 

  • — and L. E. H. Trainor. 1979. “On the Statistical Mechanics of Constrained Biophysical Systems.”J. statist. Phys. 20, 657–669.

    Article  Google Scholar 

  • — and —. 1985. “Hamiltonian Statistical Mechanics and Biological Order: Problems and Progress.” InMathematical Essays on Growth and the Emergence of Form, P. L. Antonelli (Ed.). Calgary: Harvard University Press.

    Google Scholar 

  • Maynard Smith, J. 1964. “Group Selection and Kin Selection: A Rejoinder.”Nature 201, 1145–1147.

    Article  Google Scholar 

  • Mayr, E. 1970.Populations, Species and Evolution. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • McFarland, D. and A. Houston. 1981.Quantitative Ethology: The State Space Approach. Marshfield, Massachusetts: Pitman.

    Google Scholar 

  • Mesarović, M. D., D. Macko, and Y. Takahara. 1970.Theory of Hierarchical Multilevel Systems. New York: Academic Press.

    Google Scholar 

  • Novikoff, A. B. 1945. “The Concept of Integrative Levels and Biology.”Science 101, 209–215.

    Google Scholar 

  • Oster, G. F. and E. O. Wilson. 1978.Caste and Ecology in the Social Insects. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Pattee, H. 1973.Hierarchy Theory: The Challenge of Complex Systems. New York: George Braziller.

    Google Scholar 

  • Prigogine, I. 1962.Nonequilibrium Statistical Mechanics. New York: John Wiley.

    Google Scholar 

  • — 1980.From Being to Becoming: Time and Complexity in the Physical Sciences. San Francisco: W. H. Freeman.

    Google Scholar 

  • — and I. STengers. 1984.Order Out of Chaos: Man's New Dialogue with Nature. New York: Bantam Books.

    Google Scholar 

  • Primas, H. 1977. “Theory Reduction and NonBoolean Theories.”J. math. Biol. 4, 281–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosen, R. 1967.Optimality Principles in Biology. London: Butterworths.

    Google Scholar 

  • — 1968. “On Analogous Systems.”Bull. math. Biophys.,30, 481–492.

    MATH  Google Scholar 

  • — 1976. “Structural Stability, Alternate Descriptions and Information.”J. theor. Biol. 63, 19–31.

    Article  Google Scholar 

  • — 1977a. “Observation and Biological Systems.”Bull. math. Biol. 39, 663–677.

    Google Scholar 

  • — 1977b.The Measurement and Representation of Natural Systems. New York: Elsevier.

    Google Scholar 

  • Ruelle, D. 1969.Statistical Mechanics: Rigorous Results. Reading, Massachusetts: Benjamin.

    Google Scholar 

  • Sewell, G. L. 1965. “Quantum-statistical Theory of Irreversible Processes: Dynamics of Gross Variables.”Physica 31, 1520–1536.

    Article  MathSciNet  Google Scholar 

  • Simon, H. A. 1962. “The Architecture of Complexity.”Proc. Am. Phil. Soc. 106, 467–482.

    Google Scholar 

  • — and A. Ando. 1961. “Aggregation of Variables in Dynamic Systems.”Econometrica 29, 111–138.

    Article  MATH  Google Scholar 

  • Soong, T. T. 1977. “On Model Reduction of Large-scale Systems.”J. math. Analysis Applic. 60, 477–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Vagners, J. 1974. “Optimization Techniques.” InHandbook of Applied Mathematics, C. E. Pearson (Ed.), pp. 1104–1180. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Vemuri, V. 1978.Modelling of Complex Systems. New York: Academic Press.

    Google Scholar 

  • Wagner, G. P. 1984. “Coevolution of Functionally Constrained Characters: Prerequisites for Adaptive Versatility.”Biosystems 17, 51–55.

    Article  Google Scholar 

  • Weidlich, W. 1972. “The Use of Statistical Models in Sociology.”Collect. Phenomena 1, 51–59.

    Google Scholar 

  • Whyte, L. L., A. G. Wilson and D. Wilson (Eds) 1969.Hierarchical Structures. New York: Elsevier.

    Google Scholar 

  • Wilson, D. 1969. “Forms of Hierarchy: A Selected Bibliography.”Gen. Syst. XIV, 3–15.

    Google Scholar 

  • Wilson, D. S. 1980.The Natural Selection of Populations and Communities. Menlo Park, California: Benjamin/Cummings.

    Google Scholar 

  • Wilson, E. O. 1968. “The Ergonomics of Caste in the Social Insects.”Am. Nat. 102, 41–66.

    Article  Google Scholar 

  • — 1980a. “Caste and Division of Labor in Leaf-cutter Ants (Hymenoptera: Formicidae:Atta). II. The Ergonomic Optimization of Leaf Cutting.”Behavl Ecol. Sociobiol. 7, 157–165.

    Article  Google Scholar 

  • Zwanzig, R. 1960. “Ensemble Method in the Theory of Irreversibility.”J. Chem. Phys. 33, 1338–1341.

    Article  MathSciNet  Google Scholar 

  • — 1961a. “Memory Effects in Irreversible Thermodynamics.”Phys. Rev. 124, 983–992.

    Article  MATH  Google Scholar 

  • — 1961b. “Statistical Methods of Irreversibility.” InLectures in Theoretical Physics, W. E. Brittin (Ed.), Volume VIII, pp. 106–141. New York: Interscience.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumsden, C.J. Hierarchical behavior in fit dynamical systems. Bltn Mathcal Biology 47, 591–612 (1985). https://doi.org/10.1007/BF02460128

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460128

Keywords

Navigation