Skip to main content
Log in

Pulse waves in prestressed arteries

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to better understand the effect of initial stress in blood flow in arteries, a theoretical analysis of wave propagation in an initially inflated and axially stretched cylindrical thick shell is investigated. For simplicity in the mathematical analysis, the blood is assumed to be an incompressible inviscid fluid while the arterial wall is taken to be an isotropic, homogeneous and incompressible elastic material. Employing the theory of small deformations superimposed on a large initial field the governing differential equations of perturbed solid motions are obtained in cylindrical polar coordinates. Considering the difficulty in obtaining a closed form solution for the field equations, an approximate power series method is utilized. The dispersion relations for the most general case of this approximation and for the thin tube case are thoroughly discussed. The speeds of waves propagating in an unstressed tube are obtained as a special case of our general treatment. It is observed that the speeds of both waves increase with increasing inner pressure and axial stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Atabek, H. B. and H. S. Lew. 1966. “Wave Propagation Through a Viscous Incompressible Fluid Contained in an Initially Stressed Elastic Tube.”Biophys. J. 7, 480–503.

    Google Scholar 

  • — 1968. “Wave Propagation Through a Viscous Fluid Contained in a Tethered, Initially Stressed Orthotropic Elastic Tube.”Biophys. J. 8, 626–649.

    Article  Google Scholar 

  • Attinger, E. O. 1964.Pulsatile Blood Flow. New York: McGraw-Hill.

    Google Scholar 

  • Bergel, H. d. 1961. “The Static Elastic Properties of the Arterial Wall.”J. Physiol. 156, 445–457.

    Google Scholar 

  • Cox, R. H., 1975. “Anisotropic Properties of the Canine Carotid Arteryin Vitro.”J. Biomech.,8, 293–300.

    Article  Google Scholar 

  • Demiray, H. 1976. “Some Basic Problems in Biophysics.”Bull. math. Biol. 38, 701–711.

    MATH  Google Scholar 

  • — 1985. “Effects of Twist on Pulse Waves in Arteries.”Bull. math. Biol. 47, 495–502.

    Article  MATH  Google Scholar 

  • Eringen, A. C. and E. S. Suhubi. 1974.Elastodynamics, Vol.I New York: Academic Press.

    MATH  Google Scholar 

  • Fen, W. O. 1957. “Changes in Length of Blood Vessels on Inflation.” InTissue Elasticity J. Remington (Ed.), pp. 154–167. Washington, D.C.: American Physiological Society.

    Google Scholar 

  • Fung, Y. C., K. Fronek and P. Patitucci. 1979. “Pseudoelasticity of Arteries and the Choice of its Mathematical Expression.”Am. J. Physiol. H, 620–631.

    Google Scholar 

  • — 1984.Biodynamics: Circulation. New York: Springer.

    Google Scholar 

  • Green, A. E. and W. Zerna. 1968.Theoretical Elasticity. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Kuiken, G. D. C. 1984. “Wave Propagation in a Thin Walled Liquid-filled Initially Stressed Tube.”J. Fluid Mech.,141, 289–308.

    Article  MATH  Google Scholar 

  • Lambossy, P. 1951. “Apercu historique et critique sur le probleme de la propagation des ondes dans un liquide compressible enferme dans un tube elastique.”Helv. Physiol. Acta 9, 145–161.

    Google Scholar 

  • Lawton, R. W. 1955. “Measurements on the Elasticity and Damping of Isolated Aortic Strips in the Dog.”Circulation Res. 3, 403–408.

    Google Scholar 

  • McDonald, D. A. 1966.Blood Flow in Arteries. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Mirsky, I. 1967. “Wave Propagation in a Viscous Fluid Contained in an Orthotropic Elastic Tube.”Biophys. J. 7, 165–186.

    Google Scholar 

  • Morgan, G. W. and J. P. Kiely. 1954. “Wave Propagation in a Viscous Liquid Contained in a Flexible Tube.”J. acoust. Soc. Am. 26, 323–328.

    Article  MathSciNet  Google Scholar 

  • Rachev, A. I. 1980. “Effect of Transmural Pressure and Muscular Activity on Pulse Waves in Arteries.”J. Biomechanical Engr. ASME 102, 119–123.

    Article  Google Scholar 

  • Rubinow, S. I. and J. B. Keller. 1971. “Wave Propagation in a Fluid-filled Tube.”,J. acoust. Soc. Am. 50, 198–223.

    Article  MATH  Google Scholar 

  • Simon, B. R., A. S. Kobayashi, D. E. Strandness and C. A. Wiederhielm. 1972. “Re-evaluation of Arterial Constitutive Laws.”Circulation Res. 30, 491–500.

    Google Scholar 

  • Skalak, R. 1966. “Wave Propagation in Blood Flow.” InBiomechanics Symposium, Y. C. Fung (Ed.), pp. 20–40. New York: Am. Soc. Mech. Engrs.

    Google Scholar 

  • Vaishnav, R. N., J. T. Young, J. S. Janicki and D. J. Patel. 1972. “Nonlinear Anisotropic Elastic Properties of the Canine Aorta.”Biophys. J. 12, 1008–1027.

    Google Scholar 

  • Womersley, J. R. 1957. “An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries.” W.A.D.C. Technical report, TR56-614.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbay, H.A., Erbay, S. & Demiray, H. Pulse waves in prestressed arteries. Bltn Mathcal Biology 49, 289–305 (1987). https://doi.org/10.1007/BF02460121

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460121

Keywords

Navigation