Skip to main content
Log in

Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Adult dermal wounds, in contrast to fetal wounds, heal with the formation of scar tissue. A crucial factor in determining the degree of scarring is the ratio of types I and III collagen, which regulates the diameter of the combined fibers. We developed a reaction-diffusion model which focuses on the control of collagen synthesis by different isoforms of the polypeptide transforming growth factor-β (TGFβ). We used the model to investigate the current controversy as to whether the fibroblasts migrate into the wound from the surrounding unwounded dermis or from the underlying subcutaneous tissue. Numerical simulations of a spatially independent, temporal model led to a value of the collagen ratio consistent with that of healthy tissue for the fetus, but corresponding to scarring in the adult. We investigated the effect of topical application of TGFβ and show that addition of isoform 3 reduces scar tissue formation, in agreement with the experiment. However, numerical solutions of the reaction-diffusion system do not exhibit this sensitivity to growth factor application. Mathematically, this corresponds to the observation that behind healing wavefront solutions, a particular healed state is always selected independent of transients, even though there is a continuum of possible positive steady states. We explain this phenomenon using a caricature system of equations, which reflects the key qualitative features of the full model but has a much simpler mathematical form. Biologically, our results suggest that the migration into a wound of fibroblasts and TGFβ from the surrounding dermis alone cannot account for the essential features of the healing process, and that fibroblasts entering from the underlying subcutaneous tissue are crucial to the healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adzick, N. S. and M. T. Longaker. 1992. Characteristics of fetal tissue repair. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 53–70.

    Google Scholar 

  • Appling, W. D., W. R. O'Brien, D. A. Johnston and M. Duvie. 1989. Synergistic enhancement of type I and III collagen production in cultured fibroblasts by transforming growth factor-β and ascorbate.FEBS Lett. 250, 541–544.

    Article  Google Scholar 

  • Armstrong, J. R. and M. W. J. Ferguson. 1995. Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial,Monodelphis domestica.Dev. Biol. 169, 242–260.

    Article  Google Scholar 

  • Bard, J. B. L. and E. D. Hay. 1975. The behaviour of fibroblasts from the developing avian cornea: morphology and movementin situ andin vitro.J. Cell Biol. 67, 400–418.

    Article  Google Scholar 

  • Canosa, J. 1973. On a nonlinear diffusion equations describing population growth.IBM J. Res. Dev. 17, 307–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaplain, M. A. J., S. M. Giles, B. D. Sleeman and R. J. Jarvis. 1995. A mathematical analysis of a model for tumour angiogenesis.J. Math. Biol. 33, 744–770.

    Article  MATH  Google Scholar 

  • Chen, R. H., R. Ebner and R. Derynck. 1993. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGFβ activities.Science 260, 1335–1338.

    Google Scholar 

  • Crosson, C. E., R. W. Klyce and R. W. Beuerman. 1986. Epithelial wound closure in the rabbit cornea.Invest. Ophthal. Vis. Sci. 27, 464–473.

    Google Scholar 

  • Dale, P. D., P. K. Maini and J. A. Sherratt. 1994. Mathematical modelling of corneal epithelial wound healing.Math. Biosci. 124, 127–147.

    Article  MATH  Google Scholar 

  • Dale, P. D., J. A. Sherratt and P. K. Maini. 1996. A mathematical model for collagen fibre formation during foetal and adult dermal wound healing.Proc. R. Soc. Lond. B 263, 653–660.

    Google Scholar 

  • Ferguson, M. W. J. and G. F. Howarth. 1992. Marsupial models of scarless fetal wound healing. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 95–124.

    Google Scholar 

  • Fisher, R. A. 1937. The wave of advance of advantageous genes.Ann. Eugen. 7, 353–369.

    Google Scholar 

  • Flint, M. H., A. S. Craig, H. C. Reilly, G. C. Gillard and D. A. D. Parry. 1984. Collagen fibril diameters and glycosaminoglycan content of skins—indices of tissue maturity and function.Connect. Tissue Res. 13, 69–81.

    Article  Google Scholar 

  • Jeffrey, J. J. 1992. Collagen degradation. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 177–194.

    Google Scholar 

  • Knight, K. R., D. A. Lepore, R. S. C. Horne, M. Ritz, J. V. Hurley, S. Kumta and B. M. O'Brien, 1993. Collagen content of uninjured skin and scar tissue in fetal and adult sheep.Int. J. Exp. Pathol. 74, 583–591.

    Google Scholar 

  • Kolmogoroff, A., I. Petrovsky and N. Piscounoff. 1937. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique.Moscow Univ. Bull. Math. 1, 1–25.

    MATH  Google Scholar 

  • Krieg, T. 1995. Collagen in the healing wound.Wounds 7, A5-A12.

    Google Scholar 

  • Krummel, T. M., B. A. Michna, B. L. Thomas, M. B. Sporn, J. M. Nelson, A. M. Salzberg, I. K. Cohen and R. F. Diegelmann. 1988. Transforming growth factor beta induces fibrosis in a fetal wound model.J. Pediatr. Surg. 23, 647–652.

    Google Scholar 

  • Lin, R. Y., K. M. Sullivan, P. A. Argenta, M. Meuli, H. P. Lorenz and N. S. Adzick. 1995. Exogenous transforming growth factor beta amplifies its own expression and induces scar formation in a model of human fetal skin repair.Annal Surg. 222, 146–154.

    Article  Google Scholar 

  • Martin, P., J. Hopkinson-Woolley and J. McCluskey. 1992. Growth factors and cutaneous wound repair.Progr. Growth Factor Res. 4, 25–44.

    Article  Google Scholar 

  • Mast, B. A., J. M. Nelson and T. M. Krummel. 1992. Tissue repair in the mammalian fetus. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 326–343.

    Google Scholar 

  • McDonald, J. A. 1988. Fibronectin: a primitive matrix. InThe Molecular and Cellular Biology of Wound Repair, R. A. F. Clark and P. M. Henson (Eds). New York: Plenum, pp. 405–436.

    Google Scholar 

  • Merkel, J. R., B. R. DiPaolo, G. C. Hallock and D. C. Rice 1988. Type I and type III collagen content of healing wounds in fetal and adult rates.Proc. Soc. Exp. Biol. Med. 187, 493–497.

    Google Scholar 

  • Morgan, C. J. and W. J. Pledger. 1992. Fibroblast proliferation. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 63–76.

    Google Scholar 

  • Murphy, P. G., B. J. Loitz, C. B. Frank and D. A. Hart. 1994. Influence of exogenous growth factors on the synthesis and secretion of collagen type-I and type-III by explants of normal and healing rabbit ligaments.Biochem. Cell Biol. 72, 403–409.

    Article  Google Scholar 

  • Murray, J. D., R. T. Tranquillo and P. K. Maini. 1988. Mechanochemical models for generating biological pattern and form in development.Phys. Rep. 171, 59–84.

    Article  MathSciNet  Google Scholar 

  • Olsen, L., J. A. Sherratt and P. K. Maini. 1996. A mathematical model for fibro-proliferative wound healing disorders.Bull. Math. Biol.,58, 787–808.

    MATH  Google Scholar 

  • Olsen, L., P. K. Maini, J. A. Sherratt and B. Marchant. (in press). Simple modelling of extracellular matrix alignment in dermal wound healing. I. Cell flux induced alignment.

  • Peacock, E. E. 1984Wound Repair. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Pierce, G. F., D. Brown and T. A. Mustoe. 1991. Quantitative analysis of the inflammatory cell influx, procollagen type I synthesis, and collagen cross-linking in incisional wounds: influence of PDGF-BB and TGF-β1 therapy.J. Lab. Clin. Med. 117, 373–382.

    Google Scholar 

  • Roberts, A. B. and M. B. Sporn. 1990. The transforming growth factor-βs. InPeptide Growth Factors and Their Receptors, M. B. Sporn and A. B. Roberts (Eds). Berlin: Springer-Verlag, pp. 419–472.

    Google Scholar 

  • Rothe, F. 1978. Convergence to travelling fronts in semilinear parabolic equations.Proc. R. Soc. Edin. 80A, 213–234.

    MathSciNet  Google Scholar 

  • Shah, M., D. M. Foreman and M. W. J. Ferguson. 1992. Control of scarring in adult wounds by neutralising antibody to transforming growth factor β.Lancet 339, 213–214.

    Article  Google Scholar 

  • Shah, M., D. M. Foreman and M. W. J. Ferguson. 1994. Neutralizing antibody to TGFβ(1,2) reduces scarring in adult rodents.J. Cell Sci. 107, 1137–1157.

    Google Scholar 

  • Shah, M., D. M. Foreman and M. W. J. Ferguson. 1995. Neutralization of TGFβ1 and TGFβ2 or exogenous addition of TGFβ3 to cutaneous rat wounds scarring.J. Cell Sci. 108, 985–1002.

    Google Scholar 

  • Sherratt, J. A. and J. D. Murray. 1990. Models of epidermal wound healing.Proc. R. Soc. Lond. B 241, 29–36.

    Google Scholar 

  • Sinclair, R. D. and T. J. Ryan. 1994. Proteolytic enzymes in wound healing: the role of enzymatic debridement.Austr. J. Dermatol. 35, 35–41.

    Google Scholar 

  • Streuli, C. H., C. Schmidhauser, M. Kobrin, M. J. Bissell and R. Derynck. 1993. Extracellular matrix regulates expression of the TGF-β1 gene.J. Cell Biol.,120, 253–260.

    Article  Google Scholar 

  • Stricklin, G. P., E. A. Bauer and J. J. Jeffrey. 1978. Human skin collagenase: chemical properties of precursor and active forms.Biochemistry 17, 2331–2337.

    Article  Google Scholar 

  • Varedi, M., E. E. Tredget, P. G. Scott, Y. J. Shen and A. Ghahary. 1995. Alteration in cell morphology triggers transforming growth factor beta 1, collagenase, and tissue inhibitor of metalloproteinases I expression in normal and hypertrophic scar fibroblasts.J. Invest. Dermatol. 104, 118–123.

    Article  Google Scholar 

  • Whitby, D. J. and M. W. J. Ferguson. 1991. Immunohistochemical localization of growth factors in fetal wound healing.Dev. Biol. 147, 207–215.

    Article  Google Scholar 

  • Whitby, D. J. and M. W. J. Ferguson. 1992. Immunohistochemical studies of the extracellular matrix and soluble growth factors in fetal and adult wound healing. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 161–176.

    Google Scholar 

  • Zhang, K., W. Garner, L. Cohen, J. Rodriguez and S. Phan. 1995. Increased type I and type III collagen and transforming growth factor β-1 messenger RNA and protein in hypertrophic burn scar.J. Invest. Dermatol. 104, 750–754.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, P.D., Sherratt, J.A. & Maini, P.K. Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing. Bltn Mathcal Biology 59, 1077–1100 (1997). https://doi.org/10.1007/BF02460102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460102

Keywords

Navigation