Skip to main content
Log in

An extremal criterion for epimorphic regeneration

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many developing systems obey the principle of continuity: a morphogenetic field, when perturbed, tends to restore the normal local pattern of structures in its organ district. We have investigated physical field theories for a morphogenetic field, seeking constraints which would make a field theory produce the principle of continuity. We assume that during embryonic (ontogenetic) development a leg develops a pattern of positional values and a length which extremize a time-independent functional—the integral, over the length of the leg, of a function of positional values and position. For a single state variable which represents positional value, if a unique extremizing solution for the ontogenetically generated pattern and the length exists, and if no position-dependent functions other than the state variable appear in the integrand, then the principle of continuity is valid: in any regenerated leg the state variable is continuous and each region is locally identical to a region of the ontogenetically generated leg. This proposition is applied to three simple examples. For an exponential gradient and a Jacobi elliptic function there is a set of parameter values and boundary values for which a functional is minimized and the ontogenetically generated leg has an optimal length. Thus a leg which meets these constraints will obey the principle of continuity. However, a functional which when extremized gives a sinusoidal pattern does not in general provide a unique extremal length. Mathematical conditions are discussed under which an ontogenetically generated limb or a regenerated limb represents an asymptotically stable steady state. For a specific model of the transient dynamics in the exponential gradient case, the steady state gradient is asymptotically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abraham, R. H. and C. D. Shaw.Dynamics—The Geometry of Behavior. Part I: Periodic Behavior, Santa Cruz: Aerial Press.

  • Barrett, A. N. and D. Summerbell. 1984. “Mathematical Modelling of the Growth Processes in the Developing Chick Wing Bud.”Comput. biol. Med.,14, 411–418.

    Article  Google Scholar 

  • Ben-Jacob, E., H. Brand, G. Dee, L. Kramer and J. S. Langer. 1985. “Pattern Propagation in Nonlinear Dissipative Systems.”Physica 14D, 348–364.

    MathSciNet  Google Scholar 

  • Bolza, O. 1904.Lectures on the Calculus of Variations. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Bowman, F. 1961.Introduction to Elliptic Functions with Applications. Dover, New York.

    MATH  Google Scholar 

  • Bulliere, D. and F. Bulliere. 1985. “Regeneration.” InComprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 2: Postembryonic Development, G. A. Kerkut and L. I. Gilbert (Eds), pp. 387–440. New York: Pergamon Press.

    Google Scholar 

  • Byrd, P. F. and M. D. Friedman. 1956.Handbook of Elliptic Integrals for Engineers and Physicists. Berlin: Springer.

    Google Scholar 

  • Chafee, N. and E. Infante. 1974. A Bifurcation Problem for a Nonlinear Parabolic Equation.J. Applic. Anal. 4, 17–37.

    MATH  MathSciNet  Google Scholar 

  • Courant, R. and D. Hilbert. 1965.Methods of Mathematical Physics, Vol. 1. New York: Interscience.

    Google Scholar 

  • Cummings, F. W. 1985. A Pattern-Surface Interactive Model of Morphogenesis.J. theor. Biol. 116, 243–273.

    Article  MathSciNet  Google Scholar 

  • Do Carmo, M. P. 1976.Differential Geometry of Curves and Surfaces. New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Ede, D. A. and J. T. Law. 1969. “Computer Simulation of Vertebrate Limb Morphogenesis.”Nature 221, 244–248.

    Article  Google Scholar 

  • Elsgolts, L. 1970.Differential Equations and the Calculus of Variations. Moscow: Mir.

    Google Scholar 

  • French, V., P. J. Bryant and S. V. Bryant. 1976. Pattern Regulation in Epimorphic Fields.Science 193, 969–981.

    Google Scholar 

  • Goodwin, B. C. 1963.Temporal Organization in Cells. Academic Press, New York.

    Google Scholar 

  • — and L. E. H. Trainor. 1983. “The Ontogeny and Phylogeny of the Pentadactyl Limb.” InDevelopment and Evolution, B. C. Goodwin, N. Holder and C. C. Wylie (Eds), pp. 75–98. New York: Cambridge University Press.

    Google Scholar 

  • Henry, D.Geometric Theory of Semilinear Parabolic Equations. 1981. Berlin: Springer.

    MATH  Google Scholar 

  • Hinchliffe, J. R. and D. R. Johnson.The Development of the Vertebrate Limb. 1980. Oxford: Clarendon Press.

    Google Scholar 

  • Jordan, D. W. and P. Smith. 1977.Nonlinear Ordinary Differential Equations. p. 39. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Lipschutz, M. M. 1969.Differential Geometry. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Malvern, L. E. 1969.Introduction to the Mechanics of a Continuous Medium. New Jersey: Prentice-Hall.

    Google Scholar 

  • Meinhardt, H. 1983. “A Boundary Model for Pattern Formation in Vertebrate Limbs.J. Embryol. Exp. Morph. 76, 115–137.

    Google Scholar 

  • Mittenthal, J. E. 1980. “On the Form and Size of Crayfish Legs Regenerated after Grafting.”Biol. Bull. 159, 700–713.

    Google Scholar 

  • — 1985. “Morphogenetic Fields and the Control of Form in the Limbs of Decapods.” InCrustacean growth: Factors in adult growth, A. M. Wenner (Ed.), pp. 47–71. Rotterdam: Balkema.

    Google Scholar 

  • — and R. M. Mazo. 1983. “A Model for Shape Generation by Strain and Cell-Cell Adhesion in the Epithelium of an Arthropod Leg Segment.”J. theor. Biol. 100, 443–483.

    Article  Google Scholar 

  • Mitolo, V. 1971. “Un Programma in Fortran per la Simulazione dell'Accrescimento e della Morfogenesi.Boll. Soc. ital. Biol. sper. 47, 18–20.

    Google Scholar 

  • Morgan, T. H. 1901.Regeneration. New York: Macmillan.

    Google Scholar 

  • Muneoka, K. and S. V. Bryant. 1982. “Evidence that Patterning Mechanisms in Developing and Regenerating Limbs are the Same.Nature 298, 369–371.

    Article  Google Scholar 

  • Newman, S. and J. Frisch. 1979. “Dynamics of Skeletal Pattern Formation in Developing chick Limb.Science 205, 662–668.

    Google Scholar 

  • Oster, G. F., J. D. Murray and A. K. Harris. 1983. “Mechanical Aspects of Mesenchymal Morphogenesis.”J. Embryol. Exp. Morph. 78, 83–125.

    Google Scholar 

  • —— and P. K. Maini. 1985. “A Model for Chondrogenic Condensations in the Developing Limb: The Role of Extracellular Matrix and Cell Tractions.”J. Embryol. Exp. Morph. 89, 93–112.

    Google Scholar 

  • Papageorgiou, S. 1984. “A Hierarchical Polar Co-ordinate Model for Epimorphic Regeneration.J. theor. Biol. 109, 533–554.

    Article  Google Scholar 

  • Pritchard, A. J. 1968. “A Study of Two of the Classical Problems of Hydrodynamic Stability by the Liapunov Method.”J. Inst. Math. Applic. 4, 78–93.

    MATH  Google Scholar 

  • Rosen, R. 1967.Optimality Principles in Biology, p. 68. London: Butterworths.

    MATH  Google Scholar 

  • Ross, S. L. 1964.Differential Equations. New York: Blaisdell.

    MATH  Google Scholar 

  • Shames, I. H. and C. L. Dym. 1985.Energy and Finite Element Methods in Structural Mechanics. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Spivak, M. 1975.A Comprehensive Introduction to Differential Geometry, Vols 3 and 4. Boston: Publish or Perish.

    Google Scholar 

  • Stocum, D. L. 1984. “The Urodele Limb Regeneration Blastema. Determination and Organization of the Morphogenetic Field.”Differentiation 27, 13–28.

    Article  Google Scholar 

  • Tevlin, P. and L. E. H. Trainor. 1985. “A Two Vector Field Model of Limb Regeneration and Transplant Phenomena.”J. theor. Biol. 115, 495–513.

    MathSciNet  Google Scholar 

  • Todd, P. H. 1985a. “Gaussian Curvature as a Parameter of Biological Surface Growth.”J. theor. Biol. 113, 63–68.

    MathSciNet  Google Scholar 

  • —, 1985b. “Estimating Surface Growth Rates from Changes in Curvature.”math. Biosci. 74, 157–176.

    Article  MATH  MathSciNet  Google Scholar 

  • Totafurno, J. 1985. “A Non-Linear Vector Field Model with Application to Supernumerary Production in Amphibian Limb Regeneration. Ph.D Thesis, Department of Physics, University of Toronto.

  • — and L. E. H. Trainor. 1987. “A Non-Linear Vector Field Model of Supernumerary Limb Production in Salamanders.J. theor. Biol. 124, 415–454.

    Article  MathSciNet  Google Scholar 

  • Waddington, C. H. 1966. “Fields and Gradients.” InMajor Problems in Developmental Biology (25th Symposium of the Society for Developmental Biology), M. Locke (Ed.), pp. 105–124. New York: Academic Press.

    Google Scholar 

  • Wilby, O. K. and D. A. Ede. 1975. “A Model Generating the Pattern of Cartilage Skeletal Elements in the Embryonic Chick Limb.”J. theor. Biol. 52, 199–217.

    Article  Google Scholar 

  • Winfree, A. T. 1984. “A Continuity Principle for Regeneration.” InPattern Formation, G. M. Malacinski, S. V. Bryant (Eds), pp. 103–124. New York: Macmillan.

    Google Scholar 

  • Wolpert, L. 1971. “Positional Information and Pattern Formation.Curr. Topics Dev. Biol. 6, 183–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, B.S., Mittenthal, J.E. & Arcuri, P.A. An extremal criterion for epimorphic regeneration. Bltn Mathcal Biology 50, 595–634 (1988). https://doi.org/10.1007/BF02460093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460093

Keywords

Navigation