Skip to main content
Log in

Existence of steady-state probability distributions in multilocus models for genotype evolution

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

It is shown that a representative Fisher-Wright model withn(≥3) diallelic loci admits a necessary condition for existence of a time-independent steady-state probability distribution. This necessary condition states that a global integral depending on the phenotype fitness functions of natural selection must be larger than a certain quantity depending on the parameters associated with genetic drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Campbell, R. B. 1984. “Manifestation of Phenotypic Selection at Constituent Loci. I. Stabilizing Selection.”Evolution 38, 1033–1038.

    Article  Google Scholar 

  • Cohan, F. M. 1984. “Can Uniform Selection Retard Random Genetic Divergence Between Isolated Conspecific Populations?”Evolution 38, 495–504.

    Article  Google Scholar 

  • Curtsinger, J. W. 1984. “Evolutionary Landscapes for Complex Selection.”Evolution 38, 359–367.

    Article  Google Scholar 

  • Ethier, S. N. and T. Nagylaki. 1980. “Diffusion Approximations of Markov Chains with Two Time Scales and Applications to Population Genetics.”Adv. appl. Prob. 12, 14–19.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, R. A. 1922. “On the Dominance Ratio.”Proc. R. Soc. Edinb. 42, 321–341.

    Google Scholar 

  • Lieb, E. H. 1983. “Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities.”Ann. Math. 118, 349–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Lions, P. L. 1983. “Applications de la Méthode de Concentration-compacité à l'Existence de Fonctions Extrémales.”C. r. Acad. Sci. Paris 296, 645–648.

    MATH  Google Scholar 

  • Maruyama, T. 1983. “Stochastic Theory of Population Genetics.”Bull. math. Biol. 45, 521–554.

    Article  MATH  MathSciNet  Google Scholar 

  • Protter, M. H. and H. F. Weinberger. 1967.Maximum Principles in Differential Equations, p. 187. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Rosen, G. 1984. “Necessary Condition for Fokker-Planck Statistical Equilibrium.”Phys. Rev. A30, 3359–3363.

    Article  MathSciNet  Google Scholar 

  • Roughgarden, J. 1979.Theory of Population Genetics and Evolutionary Ecology: An Introduction, p. 111–113. New York: Macmillan.

    Google Scholar 

  • Stenseth, N. C. and J. Maynard Smith. 1984. “Coevolution in Ecosystems: Red Queen Evolution or Stasis?”Evolution 38, 870–880.

    Article  Google Scholar 

  • Wang, M. C. and G. E. Uhlenbeck. 1945. “On the Theory of the Brownian Motion II.”Rev. mod. Phys. 17, 323–342.

    Article  MATH  MathSciNet  Google Scholar 

  • Wright, S. 1931. “Evolution in Mendelian Populations.”Genetics 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, G. Existence of steady-state probability distributions in multilocus models for genotype evolution. Bltn Mathcal Biology 48, 87–95 (1986). https://doi.org/10.1007/BF02460064

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460064

Keywords

Navigation