Skip to main content
Log in

A formalization of consensus index methods

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A consensus in dex method comprises a consensus method and a consensus index that are defined on a common set of objects (e.g. classifications). For each profile of objects, the consensus method returns a consensus object representing information or structure shared among profile objects, while the consensus index returns a quantitative measure of agreement among profile objects. Since the relationship between consensus method and consensus index is poorly understood, we propose simple axioms prescribing it in the most general terms. Many taxonomic consensus index methods violate these axioms because their consensus indices measure consensus object invariants rather than profile agreement. We propose paradigms to obtain consensus index methods that measure agreement and satisfy the axioms. These paradigms salvage concepts underlying consensus index methods violating the axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Adams III. E. N. 1972. “Consensus Techniques and the Comparison of Taxonomic Trees.”Syst. Zool. 21, 390–397.

    Article  Google Scholar 

  • Barthelemy, J. P. and B. Monjardet. 1981. “The Median Procedure in Cluster Analysis and Social Choice Theory.”Mathl Soc. Sci. 1, 235–267.

    Article  MATH  MathSciNet  Google Scholar 

  • Bobisud, H. M. and L. E. Bobisud. 1972. “A Metric for Classifications.”Taxon 21, 607–613.

    Article  Google Scholar 

  • Colless, D. H. 1980. “Congruence Between Morphometric and Allozyme Data forMenidia Species: a Reappraisal.”Syst. Zool. 29, 288–299.

    Article  Google Scholar 

  • Day, W. H. E. 1983. “The Role of Complexity in Comparing Classifications.”Mathl Biosci. 66, 97–114.

    Article  MATH  MathSciNet  Google Scholar 

  • —. 1985. “Optimal Algorithms for Comparing Trees With Labeled Leaves.”J. Classification,2, 8–30.

    MathSciNet  Google Scholar 

  • Galanter, E. H. 1956. “An Axiomatic and Experimental Study of Sensory Order and Measure.”Psychol. Rev. 63, 16–28.

    Article  Google Scholar 

  • Grätzer, G. 1978.General Lattice Theory. New York: Academic Press.

    Google Scholar 

  • Harary, F. 1969.Graphy Theory, Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • Marczewski, E. and H. Steinhaus. 1958. “On a Certain Distance of Sets and the Corresponding Distance of Functions.”Colloquium math. 6, 319–327.

    MATH  MathSciNet  Google Scholar 

  • Margush, T. and F. R. McMorris, 1981. “Consensusn-Trees.”Bull. math. Biol. 43, 239–244.

    Article  MATH  MathSciNet  Google Scholar 

  • McMorris, F. R., D. B. Meronk and D. A. Neumann. 1983. “A View of Some Consensus Methods for Trees”. InNumerical Taxonomy, Ed. J. Felsenstein, NATO ASI Series, Vol. G1, pp. 122–126. Berlin: Springer-Verlag.

    Google Scholar 

  • — and D. A. Neumann. 1983. “Consensus Functions Defined on Trees.”Mathl Soc. Sci. 4, 131–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Mickevich, M. F. 1978. “Taxonomic Congruence.”Syst. Zool. 27, 143–158.

    Article  Google Scholar 

  • — and J. S. Farris. 1981. “The Implications of Congruence inMenidia.”Syst. Zool. 30, 351–370.

    Article  Google Scholar 

  • Monjardet, B. 1981. “Metrics on Partially Ordered Sets—a Survey.”Discrete Math. 35, 173–184.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, G. 1979. “Cladistic Analysis and Synthesis: Principles and Definitions, With a Historical Note on Adanson'sFamilles des Plantes (1763–1764).”Syst. Zool. 28, 1–21.

    Article  Google Scholar 

  • — and N. Platnick. 1981.Systematics and Biogeography. Cladistics and Vicariance. New York: Columbia University Press.

    Google Scholar 

  • Neumann, D. A. 1983. “Fanthful Consensus Methods forn-Trees.”Mathl Biosci. 63, 271–287.

    Article  MATH  Google Scholar 

  • Papentin, F. 1980. “On Order and Complexity. I. General Considerations.”J. theor. Biol. 87, 421–456.

    Article  MathSciNet  Google Scholar 

  • Restle, F. 1959. “A Metric and an Ordering on Sets.”Psychometrika 24, 207–220.

    Article  MATH  MathSciNet  Google Scholar 

  • Rohlf F. J. 1982. “Consensus Indices for Comparing Classifications.”Mathl Biosci. 59, 131–144.

    Article  MathSciNet  Google Scholar 

  • —, D. H. Colless and G. Hart. 1983. “Taxonomic Congruence Re-examined.”Syst. Zool. 32, 144–158.

    Article  Google Scholar 

  • Schuh, R. T. and J. S. Farris, 1981. “Methods for Investigating Taxonomic Congruence and their Application to the Leptopodomorpha.”Syst. Zool. 30, 331–351.

    Article  Google Scholar 

  • Shao, K.-T. 1984. “Consensus Tree and Consensus Index Methods and the Information they Provide.” Manuscript.

  • Sokal, R. R. and F. J. Rohlf. 1981. “Taxonomic Congruence in the Leptopodomorpha Re-examined.”Syst. Zool. 30, 309–325.

    Article  Google Scholar 

  • Stinebrickner, R. 1984. “s-Consensus Trees and Indices”.Bull. math. Biol. 46, 923–935.

    MATH  MathSciNet  Google Scholar 

  • Webster's New Collegiate Dictionary. 1977. Springfield, Massachusetts: G. and C. Merriam.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Faculty of Science at Memorial University of Newfoundland, and by the Natural Sciences and Engineering Research Council of Canada Under Grant A-4142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, W.H.E., McMorris, F.R. A formalization of consensus index methods. Bltn Mathcal Biology 47, 215–229 (1985). https://doi.org/10.1007/BF02460032

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460032

Keywords

Navigation