Skip to main content
Log in

Pattern formation and morphogenesis: A reaction-diffusion model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The problem of cellular differentiation and consequent pattern generation during embryonic development has been mathematically investigated with the help of a reaction-diffusion model. It is by now a well-recognized fact that diffusion of micromolecules (through intercellular gap junctions), which is dependent on the spatial parameter (r), serve the purpose of ‘positional information’ for differentiation. Based on this principle the present model has been constructed by coupling the Goodwin-type equations for RNA and protein synthesis with the diffusion process. The homogeneous Goodwin system can exhibit stable periodic solution if the value of the cooperativity as measured by the Hill coefficient (ρ) is greater than 8, which is not biologically realistic. In the present work it has been observed that inclusion of a negative cross-diffusion can drive the system into local instability for any value of ρ and thus a time-periodic spatial solution is possible around the unstable local equilibrium, eventually leading to a definite pattern formation. Inclusion of a negative cross-diffusion thus makes the system biologically realistic. The cross-diffusion can also give rise to a stationary wave-like dissipative structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Auchmuty, J. F. G. and G. Nicolis. 1975. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations—I: Evolution Equations and the Steady State Solutions.”Bull. math. Biol. 37, 323–365.

    Article  MATH  MathSciNet  Google Scholar 

  • — and —. 1976. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations —III: Chemical Oscillations.”Bull. math. Biol. 38, 325–350.

    MATH  MathSciNet  Google Scholar 

  • Babloyantz, A. and J. Hiernaux. 1975. “Models for Cell Differentiation and Generation of Polarity in Diffusion Governed Morphogenetic Fields.”Bull. math. Biol. 37, 637–657.

    Article  MATH  Google Scholar 

  • Berding, C. and H. Haken. 1982. “Pattern Formation in Morphogenesis.”J. math. Biol. 14, 133–151.

    Article  MATH  MathSciNet  Google Scholar 

  • Boa, J. A. and D. S. Cohen. 1976. “Bifurcations of Localized Disturbances in a Model Biochemical Reaction.”SIAM J. appl. Math. 30, 123–135.

    Article  MATH  Google Scholar 

  • Erneux, T., J. Hiernaux and G. Nicolis. 1978. “Turing's Theory in Morphogenesis.”Bull. math. Biol. 40, 771–789.

    Article  MathSciNet  Google Scholar 

  • Gierer, A. and H. Meinhardt. 1972. “A Theory of Biological Pattern Formation.”Kybernetik 12, 30–39.

    Article  Google Scholar 

  • — and —. 1974. “Applications of a Theory of Biological Pattern Formation Based on Lateral Inhibition.”J. Cell. Sci.,15, 321–376.

    Google Scholar 

  • Glass, L. and S. A. Kauffman. 1972. “Co-operative Components, Spatial Localization and Oscillatory Cellular Dynamics.”J. theor. Biol. 34, 219–237.

    Article  Google Scholar 

  • — and R. Perez. 1974. “Limit Cycle Oscillations in Compartmental Chemical Systems.”J. Chem. Phys. 61, 5242–5239.

    Article  Google Scholar 

  • Goodwin, B. C. 1963.Temporal Organization in Cells. New York: Academic Press.

    Google Scholar 

  • —. 1965. “Oscillatory Behaviour in Enzymatic Control Processes.”Adv. Enzyme Regulat. 3, 425–438.

    Article  Google Scholar 

  • Granero, M. I., A. Porati and D. Zanacca. 1977. “Bifurcation Analysis of Pattern Formation in a Diffusion Governed Morphogenetic Field.”J. math. Biol.,4, 21–27.

    Article  MATH  Google Scholar 

  • Griffith, J. S. 1968. “Mathematics of Cellular Control Process I: Negative Feedback to One Gene.”J. theor. Biol. 20, 202–208.

    Article  Google Scholar 

  • Haken, H. and H. Olbrich. 1978. “analytical Treatment of Pattern Formation in the Gierer-Meinhardt Model of Morphogenesis.”J. math. Biol. 6, 317–331.

    MATH  MathSciNet  Google Scholar 

  • Jorne, J. 1975. “Negative Ionic Cross Diffusion Coefficient in Electrolytic Solution.”J. theor. Biol. 55, 529–532.

    Article  Google Scholar 

  • — 1977. “The Diffusive Lotka-Volterra Oscillating System.”J. theor. Biol. 65, 133–139.

    Article  Google Scholar 

  • Lefever, R. and I. Prigogine. 1968. “Symmetry-Breaking Instabilities in Dissipative System—II.”J. chem. Phys. 48, 1695–1700.

    Article  Google Scholar 

  • Lewis, J., M. W. Slack and L. Wolpert. 1977 “Thresholds in Development.”J. theor. Biol. 65 579–590.

    Article  Google Scholar 

  • Mahar, T. J. and B. J. Matkawsky. 1977. “A Model Biochemical Reaction Exhibiting Secondary Bifurcation.”SIAM J. appl. Math. 32, 394–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Marchbansk, R. M. 1970. “Ion Transport and Metabolism in Brain.” InMembranes and Ion Transport, Vol.2 E. Bittar (Ed.) New York: Wiley.

    Google Scholar 

  • Martinez, H. M. 1972. “Morphogenesis and Chemical Dissipative Structures: a Computer Simulated Case Study.”J. theor. Biol. 36, 479–501.

    Article  Google Scholar 

  • Murray, J. D. 1977.Lectures on Nonlinear-Differential-Equation Models in Biology. Oxford: Oxford University Press.

    Google Scholar 

  • Nakamura, R. 1963. “The Transport of Histidine and Methionine in Rat Brain Slices.”J. Biochem. 53, 314–332.

    Google Scholar 

  • Nicolis, G. and J. F. G. Auchmuty. 1974. “Dissipative Structure, Catastrophes and Pattern Formation: a Bifurcation Analysis.”Proc. natn. Acad. Sci. U.S.A.,71, 2748–2751.

    Article  MATH  MathSciNet  Google Scholar 

  • Nicolis, G. and I. Prigogine. 1977.Self Organization in Non-Equilibrium Systems. New York: Wiley.

    Google Scholar 

  • Othmer, H. C. 1977. “Current Theories of Pattern Formation.” InLectures on Mathematics in Life Sciences, S. Levin (Ed.), Vol.9, pp. 55–86. American: Mathematical Association.

    Google Scholar 

  • — and L. E. Scriven. 1971. “Instability and Dynamic Pattern in Cellular Networks.”J. theor. Biol. 32, 507–537.

    Article  Google Scholar 

  • Rapp, P. E. 1975a. “Biochemical Oscillators—a Search Procedure.”Mathl Biosci. 23, 289–303.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1975b. “A Theoretical Investigation of a Large Class of Biochemical Oscillators.”Mathl Biosci. 25, 165–188.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1976. “Mathematical Techniques for the Study of Oscillations in Biochemical Control Loops.”Bull. Inst. Math. Applics. 12, 11–21.

    Google Scholar 

  • Tapaswi, P. K. 1982. “Time Lags in an Extended Mathematical Model of Transcription and Translation During Embryogenesis.”Cybernetica 25, 151–162.

    MATH  Google Scholar 

  • — and P. Bhattacharya. 1981. “An Extended Mathematical Model of Transcription and Translation during Embryogenesis.”Cybernetica 24, 61–84.

    MATH  MathSciNet  Google Scholar 

  • Turing, A. M. 1952. “The Chemical Basis of Morpogenesis.”Phil. Trans. R. Soc. B237, 37–72.

    Google Scholar 

  • Tyson, J. J. 1975. “On the Existence of Oscillatory Solutions in Negative Feedback Cellular Control Processes.”J. math. Biol. 1, 311–315.

    MATH  MathSciNet  Google Scholar 

  • — and H. G. Othmer. 1977. “The Dynamics of Feedback Control Circuits in Biochemical Pathways.” InProgress of Theoretical Biology, Vol. 5. New York: Academic Press.

    Google Scholar 

  • Volkenshtein, M. V. 1983.Biophysics. Moscow: MIR Publishers.

    Google Scholar 

  • Waddington, C. H. 1956.Principles of Embryology. London: George Allen & Unwin.

    Google Scholar 

  • Walter, C. F. 1970. “The Occurrence and Significance of Limit Cycle Behaviour in Controlled Biochemical Systems.”J. theor. Biol. 27, 259–272.

    Article  Google Scholar 

  • Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentiation.”J. theor. Biol. 25, 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapaswi, P.K., Saha, A.K. Pattern formation and morphogenesis: A reaction-diffusion model. Bltn Mathcal Biology 48, 213–228 (1986). https://doi.org/10.1007/BF02460024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460024

Keywords

Navigation