Skip to main content
Log in

A method for the approximation of the relative humidity in the upper human airways

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to determine the growth of inhaled aerosol particles in the human respiratory tract the relative humidity in a lung model has been calculated using a numerical method. The computations take into account different types of airflows, enhanced transport mechanisms and an optimized wall temperature profile in the upper airways. These parameters are varied to fit experimental temperature data. Under certain conditions the corresponding relative humidity shows a maximum near the first bifurcation, which exceeds the final humidity in the alveoli. This high humidity forces dry NaC1 particles with diameters less than 0.5 μm to grow to their maximum size in the first bronchi. Thereafter the droplets loose water and reach their final size in the terminal bronchioles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • D'Ans Lax (Ed.). 1967.Taschenbuch für Chemiker und Physiker, Vol. 1. Berlin: Springer Verlag.

    Google Scholar 

  • Beal, S. K. 1970. “Deposition of Particles in Turbulent Flow on Channel or Pipe Walls.”Nucl. Sci. Engng 40, 1–11.

    Google Scholar 

  • Berezin, I. S. and N. P. Zhidkow. 1965.Computing Methods. Oxford: Pergamon Press.

    MATH  Google Scholar 

  • Burch, G. E. 1945. “Rate of Water and Heat Loss from the Respiratory Tract of Normal Subjects in a Subtropical Climate.”Archs intern. Med. 76, 315–327.

    Google Scholar 

  • Christie, R. V. and A. L. Loomis. 1932. “The Pressure of Aqueous Vapor in the Alveolar Air.”J. Physiol. 77, 35–48.

    Google Scholar 

  • Cole, P. 1935. “Some Aspects of Temperature, Moisture and Heat Relationships in the Upper Respiratory Tract.”J. Laryngol. 67, 449–456.

    Google Scholar 

  • —, 1953b “Further Observations on the Conditioning of the Respiratory Air.”J. Laryngol. 67, 669–681.

    Google Scholar 

  • —, 1954. “Recording of Respiratory Air Temperature.”J. Laryngol. 68, 295–307.

    Google Scholar 

  • Cramer, I. I. 1957. “Heat and Moisture Exchange of Respiratory Mucous Membrane.”Ann. Otol. Rhinol. Lar. 66, 327–343.

    Google Scholar 

  • Dekker, E. 1961. “Transition Between Laminar and Turbulent Flow in Human Trachea.”J. appl. Physiol. 16, 1060–1064.

    Google Scholar 

  • Derjaguin, B. V., I. S. Kurghin, L. A. Rosenzweig and V. A. Fedoseyev. 1971. “Study on Passivation of Condensation Growth of Drops of Water and Salt Solutions.”J. Coll. Interf. Sci. 37, 484–494.

    Article  Google Scholar 

  • Dery, R., J. Pelletier, A. Jacques, M. Clavet and J. J. Houde. 1967. “Humidity in Anaesthesiology III. Heat and Moisture Patterns in the Respiratory Tract During Anaesthesia with the Semi-closed System.”Can. Anaesth. Soc. J. 14, 287–298.

    Article  Google Scholar 

  • Diem, K. (Ed.). 1968.Scientific Tables, 6th edn. Ardsley: Geigy Pharmaceuticals.

    Google Scholar 

  • Ferron, G. A. 1977. “The Size of Soluble Aerosol Particles as a Function of the Humidity of the Air. Application to the Human Respiratory Tract.”J. Aerosol Sci. 8, 251–267.

    Article  Google Scholar 

  • Ferrus, L., H. Guenard, G. Vardon and P. Varene. 1980. “Respiratory Water Loss.”Respir. Physiol. 39, 367–381.

    Article  Google Scholar 

  • Friedlander, S. K. 1977.Smoke, Dust and Hase. Fundamentals of Aerosol Behavior, p. 302. New York: John Wiley.

    Google Scholar 

  • Getz, L. L. 1968. “Relationship Between Ambient Temperature and Respiratory Water Loss of Small Mammals.”Comp. Biochem. Physiol. 24, 335–342.

    Article  Google Scholar 

  • Hänel, G. 1975. “Beitrag zur Deposition atmosphärischer Aerosolteilchen im menschlichen Atemtrakt und in der Lunge.”Proc. Annual Congress of the Association for Aerosol Research, V. Böhlau and H. Straubel (Eds), pp. 146–149. Bad Soden.

  • Hofman, W. F. and G. D. Riegle. 1977. “Respiratory Evaporative Heat Loss Regulation in Shorn and Unshorn Sheep During Mild Heat Stress.”Respir. Physiol. 30, 339–348.

    Article  Google Scholar 

  • Holländer, W. 1978. Abstracts of the American Industrial Hygiene Association Conference.Chicago. Abstract Pape No. 157, pp. 90–91.

    Google Scholar 

  • Holman, J. P. 1976.Heat Transfer. Tokyo: McGraw-Hill Kogakusha.

    Google Scholar 

  • ICRP 23. 1975.Report of the Task Group on Reference Man. Oxford: Pergamon Press.

    Google Scholar 

  • Ingelstedt, S. 1956. “Studies on the Conditioning of Air in the Respiratory Tract.”Acta. oto-lar. Suppl. 131.

  • — and N. G. Toremalm. 1960. “Aerodynamics Within the Larynx and Trachea.”Acta oto-lar.S158, 81–92.

    Google Scholar 

  • Jackson, D. C. and K. Schmidt-Nielsen. 1964. “Countercurrent Heat Exchange in the Respiratory Passages.”Proc. natn. Acad. Sci. U.S.A. 51, 1192–1197.

    Article  Google Scholar 

  • Jacob, M. 1950.Heat Transfer. New York: John Wiley.

    Google Scholar 

  • Jähnert, B. 1982. “Wasserdampfkondensation an hygroskopischen Aerosolteilchen.” Dissertation, Goethe University, Frankfurt am Main.

    Google Scholar 

  • Kiss, F., J. Szentagothai and I. Munkacsi. 1960. “Anatomischer Atlas des menschlichen Korpers.” Leipzig: VEB Georg Thieme Verlag.

    Google Scholar 

  • Kohlrausch, F. 1968.Praktische Physik, Band 3. Stuttgart: B. G. Teubner.

    Google Scholar 

  • Landahl, H. D. 1950. “On the Removal of Air-borne Droplets by the Human Respiratory Tract: II. The Nasal Passages.”Bull. math. Biophys. 12, 161–169.

    MathSciNet  Google Scholar 

  • Langman, V. A., G. M. O. Maloiy, K. Schmidt-Nielsen and R. C. Schroter. 1979. “Nasal Heat Exchange in the Giraffe and Other Large Mammals.”Respir. Physiol. 37, 325–333.

    Article  Google Scholar 

  • Martin, D., W. Jacobi. 1972. “Diffusion Deposition of Small-sized Particles in the Bronchial Tree.”Health Phys. 23, 23–29.

    Article  MATH  Google Scholar 

  • McCutchan, J. W. and C. L. Taylor. 1951. “Respiratory Heat Exchange with Varying Temperature and Humidity of the Inspired Air.”J. appl. Physiol. 4, 121–135.

    Google Scholar 

  • Moritz, A. R. and J. R. Weisiger. 1945. “Effects of Cold Air on the Air Passages and Lungs.”Archs intern. Med. 75, 233–240.

    Google Scholar 

  • Murrish, D. E. and K. Schmidt-Nielsen. 1970. “Exhaled Air Temperature and Water Conservation in Lizards.”Respir. Physiol. 10, 151–158.

    Article  Google Scholar 

  • —, 1973. “Respiratory Heat and Water Exchange in Penguins.”Respir. Physiol. 19, 262–270.

    Article  Google Scholar 

  • Olson, D. E., G. A. Dart and G. F. Filley. 1970. “Pressure Drop and Fluid Flow Regime or Air Inspired into the Human Lung.”J. appl. Physiol. 28, 482–494.

    Google Scholar 

  • —, M. F. Sudlow, K. Horsfield and G. F. Filley. 1973. “Convective Pattern of Flow During Inspiration.”Archs. intern. Med. 131, 51–57.

    Article  Google Scholar 

  • Perwitzschky, R. 1928. “Die Temperatur und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen.”Arch. Ohrenheil. 117, 1–36.

    Google Scholar 

  • Proctor, D. F., I. Andersen and G. R. Lundqvist. 1973. “Clearance of Inhaled Particles From the Nose.”Archs intern. Med. 131, 132–139.

    Article  Google Scholar 

  • —— and —. 1977. “Human Nasal Mucosal Function at Controlled Temperatures.”Respir. Physiol. 30, 109–124.

    Article  Google Scholar 

  • Schmid, W. D. 1976. “Temperature Gradients in the Nasal Passage of Some Small Mammals.”Comp. Biochem. Physiol. 54A, 305–308.

    Google Scholar 

  • Schmidt-Nielsen, K. F., F. R. Hainsworth and D. E. Murrisch. 1970. “Countercurrent Heat Exchange in the Respiratory Passages: Effect on Water and Heat Balance.”Respir. Physiol. 9, 263–276.

    Article  Google Scholar 

  • —, 1981. “Countercurrent Systems in Animals.”Scient. Am. 244, 100–106.

    Article  Google Scholar 

  • Task Group on Lung Dynamics. 1966. “Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract.”Health Phys. 12, 173–207.

    Google Scholar 

  • Verzar, F., J. Keith and V. Parchet. 1953. “Temperatur und Feuchtigkeit der Luft in den Atemwegen.”Pflügers Archiv 257, 400–416.

    Article  Google Scholar 

  • Weast, R. C. and M. J. Astle. 1979.Handbook of Chemistry and Physics, 60th edn. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Webb, P. 1951. “Air Temperatures in Respiratory Tracts of Resting Subjects in Cold.”J. appl. Physiol. 4, 378–382.

    Google Scholar 

  • Weibel, E. R. 1963.Morphometry of the Human Lung. Berlin: Springer Verlag.

    Google Scholar 

  • Yeh, H.-C. and G. M. Schum. 1980. “Models of the Human Lung Airways and their Application to Inhaled Particle Deposition.”Bull. math. Biol. 42, 461–480.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferron, G.A., Haider, B. & Kreyling, W.G. A method for the approximation of the relative humidity in the upper human airways. Bltn Mathcal Biology 47, 565–589 (1985). https://doi.org/10.1007/BF02460015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460015

Keywords

Navigation