Skip to main content
Log in

RF-cell: A model for populations of randomly interconnected neurons

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is concerned with a population of neurons with dense random interconnections, in which the stimulations between neurons are independent of their distance apart. This study is conducted from the viewpoint of the General System Theory. Proposed and used for the first time in studies on the above subject is a new concept referred to as the ‘historical report’ of the mentioned population. It will be shown that the population exhibits cyclic modes of behaviour which are dependent on its structure and historical report and which in the phase space correspond to cycles of hysteresis. A simple model in discrete time is developed and demonstrates, by the help of a computer study, the existence of the cycles of hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anninos, P. A. 1972a. “Mathematical Model of Memory Trace and Forgetfulness.”Kybernetik 10, 165–167.

    Article  Google Scholar 

  • —. 1972b. “Cyclic Modes in Artificial Neural Nets.”Kybernetik 11, 5–14.

    Article  Google Scholar 

  • — and P. Argyrakis. 1983. “A Mathematical Model for the Decay of Short-term Memory with Age.”J. theor. Biol. 102, 191–197.

    Article  Google Scholar 

  • —— and A. Skouras. 1984. “A Computer Model for Learning Processes and the Role of the Cerebral Commissures.”Biol. Cybern. 50, 329–336.

    Article  MATH  Google Scholar 

  • —, B. Beek, T. J. Csermely, E. M. Harth and G. Pertile. 1970. “Dynamics of Neural Structures.”J. theor. Biol. 26, 121–148.

    Article  Google Scholar 

  • — and R. Elul. 1974. “Effect of Structure on Function in Model Nerve Nets.”Biophys. J. 14, 8–19.

    Google Scholar 

  • — and M. Kokkinidis. 1984. “A Neural Net Model for Multiple Memory Domains.”J. theor. Biol. 109, 95–110.

    Article  MathSciNet  Google Scholar 

  • —— and A. Skouras. 1984. “Noisy Neural Nets Exhibiting Memory Domains.”J. theor. Biol. 109, 581–594.

    Article  MathSciNet  Google Scholar 

  • — and S. Zenone. 1980. “A Neural Net Model for thea-rhythm.”Biol. Cybernetics 36, 187–191.

    Article  Google Scholar 

  • Barnwell, G. M. and F. S. Stafford. 1977. “A Mathematical Model of Decision-making Neural Circuits Controlling Behaviourial Mode Selection.”Bull. math. Biol. 39, 223–237.

    Article  MATH  Google Scholar 

  • Caial, S. R. 1909, 1911.Histologie du système nerveux de l'Homme et des vertébrés tomeI (1909), tomeII (1911). Paris: Maloine.

    Google Scholar 

  • FitzHugh, R. 1969. “Mathematical Models of Excitation and Propagation in Nerve.” InBiological Engineering, H. P. Schwan (Ed.), New York: McGraw-Hill.

    Google Scholar 

  • Franck, U. F. 1973. “Oscillatory Behaviour, Excitability and Propagation Phenomena on Membranes and Membrane-like Interfaces.” InBiochemical Oscillators. Academic Press.

  • Ganong, W. F. 1975.Review of Medical Physiology. San Francisco: Lange Medical Publications.

    Google Scholar 

  • Krinskii, V. I. 1966. “Spread of Excitation in an Inhomogeneous Medium.”Biofizika 11, 676–528.

    Google Scholar 

  • —. 1973. “Excitation Wave Propagation During Heart Fibrillation.” InBiological and Biochemical Oscillators, pp. 329–341. New York: Academic Press.

    Google Scholar 

  • — and A. V. Kholopov. 1967a. “Echo in Excitable Tissue.”Biofizika 12, 524–528.

    Google Scholar 

  • — and —. 1967b. “Conduction of Impulses in Excitable Tissue with Continuously Distributed Refractoriness.”Biofizika 12, 669–675.

    Google Scholar 

  • Leake, B. and P. A. Anninos. 1976. “Effect of Connectivity on the Activity of Neural Net Models.”J. theor. Biol. 58, 337–363.

    MathSciNet  Google Scholar 

  • Lorente de No, R. 1933. “Anatomy of the Eighth Nerve. III. General Plan of Structure of the Primary Cochlear Nuclei.”Laryngoscope 43, 327–350.

    Google Scholar 

  • —. 1947. “Action Potential of the Motoneurons of the Oculomotor Nucleus.”J. cell. comp. Physiol. 29, 207–287.

    Article  Google Scholar 

  • —. 1953. “Conduction of Impulses in the Neurons of the Oculomotor Nucleus.” InCiba Foundation Symposium: The Spinal Cord, pp. 132–179. London: Churchill.

    Google Scholar 

  • Mannen, H. 1960. “Novau Ferme at Noyau Ouvert.”Arch. Ital. Biol. 98, 333–350.

    Google Scholar 

  • — 1965. “Contribution to the Morphological Study of Dendritic Arborization in Brain Stem.”Brain Res. 21, 131–162.

    Article  Google Scholar 

  • Markin, U. S. and Y. A. Chismadjev. 1972. “Properties of a Multicomponent Excitable Medium.”J. theor. Biol. 36, 61–80.

    Article  Google Scholar 

  • McCulloch, W. S. 1962. “The Utility of Anastomotic Nets.” InRedundancy Techniques for Computing Systems. Spartan Books.

  • — and W. H. Pitts 1943. “A Logical Calculus of the Ideas Immanent in Nervous Activity.”Bull. math. Biophys. 5, 115–137.

    MATH  MathSciNet  Google Scholar 

  • Rinzel, J. and J. Keller. 1973. “Travelling Wave Solutions of a Nerve Conduction Equation.”Biophys. J. 13, 1313–1337.

    Google Scholar 

  • Wilson, H. R. and J. D. Cowan. 1972. “Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons.”Biophys. J. 12, 1–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skondras, M. RF-cell: A model for populations of randomly interconnected neurons. Bltn Mathcal Biology 50, 43–66 (1988). https://doi.org/10.1007/BF02459977

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459977

Keywords

Navigation