Skip to main content
Log in

A cascading development model for amphibian embryos

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The mesodermal tissue of some amphibian gastrula develops into a dorsal-to-ventral sequence of notochord, somite, pronephros, and lateral plate cell types. The cellular proportions regulate with respect to embryo size. The dorsal blastoporal lip appears to function as an organizer for the embryo. The transplantation of a donor lip to the ventral side of a host causes a second, opposed embryo to form and the system commits similar total proportions of cells as do normally developing embryos. Transplantation of donor somite to the ventral side of a host causes a reduction in the proportion of host somite developed. A modified reaction-diffusion system governing embryo development is proposed. Developmental simulations consistent with experimental observations are presented and analyzed. The results suggest that the degree of somite inhibition is positively correlated with the size of the somite transplant. Further predictions are that sufficiently large somite transplants would induce ectopic, ventral pronephros to form and ventral pronephros transplants would inhibit host pronephros development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ashkenazi, M. and H. G. Othmer. 1978. “Spatial Patterns in Coupled Biochemical Oscillators.”J. math. Biol.,5, 305–350.

    MATH  MathSciNet  Google Scholar 

  • Babloyantz, B. and J. Hiernaux. 1975. “Models for Cell Differentiation and Generation of Polarity in Diffusion-governed Fields.”Bull. math. Biol. 37, 637–657.

    Article  MATH  Google Scholar 

  • Bode, P. M. and H. R. Bode. 1984. “Formation of Pattern in Regenerating Tissue Pieces ofHydra attenuata. II. Degree of Proportion Regulation is Less in the Hypostome and Tentacle Zone than in Tentacles and Basal Disc.”Dev. Biol.,103, 304–312.

    Article  Google Scholar 

  • Child, C. M. 1941.Patterns and Problems of Development. Chicago: Univ. of Chicago Press.

    Google Scholar 

  • Cooke, J. 1972a. “Properties of the Primary Organization Field in the Embryo ofXenopus laevis. I. Autonomy of Cell Behavior at the Site of the Organizer.”J. Embryol. exp. Morph. 28, 13–26.

    Google Scholar 

  • — 1972b. “Properties of the Primary Organization Field in the Embryo ofXenopus laevis. II. Positional Information for Axial Organization in Embryos with Two Head Organizers.”J. Embryol. exp. Morph. 28, 27–46.

    Google Scholar 

  • — 1981. “Scale of Body Pattern Adjusts to Available Cell Number in Amphibian Embryos.”Nature 290, 775–778.

    Article  Google Scholar 

  • — 1982. “The Relation Between Scale and Completeness of Pattern in Vertebrate Embryogenesis: Models and Experiments.”Amer. Zool. 22, 91–104.

    Google Scholar 

  • — 1983. “Evidence for Specific Feedback Signals Underlying Pattern Control During Vertebrate Embryogenesis.”J. Embryol. exp. Morph. 76, 95–114.

    Google Scholar 

  • — and J. Webber. 1985a. “Dynamics of the Control of Body Pattern in the Development ofXenopus laevis. I. Timing and Pattern in the Development of Dorsoanterior and Posterior Blastomere Pairs.”J. Embryol. exp. Morph. 88, 85–112.

    Google Scholar 

  • — and—. 1985b. “Dynamics of the Control of Body Pattern in the Development ofXenopus laevis II. Timing and Pattern in the Development of Single Blastomeres (Presumptive Lateral Halves) Isolated at the 2-cell Stage.”J. Embryol. exp. Morph. 88, 113–133.

    Google Scholar 

  • Crick, F. H. C. 1970. “Diffusion in Embryogenesis.”Nature 225, 420–422.

    Article  Google Scholar 

  • Dale, L. and J. M. W. Slack. 1987. “Regional Specification within the Mesoderm of Early Embryos ofXenopus laevis.”Devel. 100, 279–295.

    Google Scholar 

  • Forman, D. and J. M. W. Slack. 1980. “Determination and Cellular Commitment in the Embryonic Amphibian Mesoderm.”Nature 286, 492–494.

    Article  Google Scholar 

  • Gear, C. W. 1971.Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

    MATH  Google Scholar 

  • Gierer A. 1981. “Some Physical, Mathematical, and Evolutionary Aspects of Biological Pattern Formation.”Phil. Trans. Roy. Soc. Lond.,B295, 429–440.

    Google Scholar 

  • — and H. Meinhardt. 1972. “A Theory of Biological Pattern Formation.”Kybernetic 12, 30–39.

    Article  Google Scholar 

  • Grunz, H. and L. Tacke. 1986. “The Inducing Capacity of the Presumptive Endoderm ofXenopus laevis Studied by Transfilter Experiments.”Roux's Arch. Dev. Biol. 195, 467–473.

    Article  Google Scholar 

  • Harrison, L. G. and T. C. Lacalli. 1978. “Hyperchirality: A Mathematically Convenient and Biochemically Possible Model for the Kinetics of Morphogenesis.”Proc. Roy. Soc. Lond. B202, 361–397.

    Article  Google Scholar 

  • Kaguera, H. and K. Yamana. 1983. “Pattern Regulation in Isolated Halves and Blastomeres of EarlyXenopus laevis.”J. Embryol. exp. Morph. 74, 221–234.

    Google Scholar 

  • — and—. 1986. “Pattern Formation in 8-cell Composite Embryos ofXenopus laevis.”J. Embryol. exp. Morph. 91, 79–100.

    Google Scholar 

  • Lacalli, T. C. and L. G. Harrison. 1978. “The Regulatory Capacity of Turing's Model for Morphogenesis, with Application to Slime Moulds.”J. theor. Biol. 70, 273–295.

    Article  MathSciNet  Google Scholar 

  • McCaig, C. D. 1986. “Myoblasts and Notochord Influence the Orientation of Somitic Myoblasts fromXenopus laevis.”J. Embryol. exp. Morph. 93, 121–131.

    Google Scholar 

  • Meinhardt, H. and A. Gierer. 1980. “Generation and Regeneration of Sequence of Structures During Morphogenesis.”J. theor. Biol. 85, 429–450.

    Article  MathSciNet  Google Scholar 

  • Munro, M. and F. H. C. Crick. 1971. “The Time Needed to Set Up a Gradient: Detailed Calculations.”Symp. Soc. exp. Biol. 25, 439–453.

    Google Scholar 

  • Nieuwkoop, P. D. 1985. “Inductive Interactions in Early Amphibian Development and Their General Nature.”J. Embryol. exp. Morph. 89S, 333–347.

    Google Scholar 

  • — and J. Faber. 1967.Normal Table of Xenopus Laevis (Daudin). Amsterdam, Netherlands: North-Holland Pub. Co.

    Google Scholar 

  • Othmer, H. G. and E. Pate. 1980. “Scale-invariance in Reaction-diffusion Models of Spatial Pattern Formation.”Proc. natn. Acad. Sci. U.S.A. 77, 4180–4184.

    Article  Google Scholar 

  • Pate, E. 1984. “The Organizer Region and Pattern Regulation in Amphibian Embryos.”J. theor. Biol.,111, 387–396.

    MathSciNet  Google Scholar 

  • Rose, S. M. 1957. “Cellular Interaction During Differentiation.”Biol. Rev. 32, 351–382.

    Google Scholar 

  • — 1970. “Differentiation During Regeneration Caused by Migration of Repressors in Bioelectric Fields.”Amer. Zool. 10, 91–99.

    Google Scholar 

  • Slack, J. M. W., L. Dale and J. C. Smith. 1984. “Analysis of Embryonic Induction by Using Cell Lineage Markers.”Phil. Trans. Roy. Soc. Lond. B307, 331–336.

    Google Scholar 

  • Smith, J. C. and J. M. W. Slack. 1983. “Dorsalization and Neural Induction: Properties of the Organizer inXenopus laevis.”J. Embryol. exp. Morph. 78, 299–317.

    Google Scholar 

  • Spemann, H. 1938.Embryonic Development and Induction. New York: Hafner Publishing Co.

    Google Scholar 

  • Turing, A. M. 1952. “The Chemical Theory of Morphogenesis.”Phil. Trans. Roy. Soc. Lond. B237, 37–72.

    Google Scholar 

  • Warner, A. E. 1985. The Role of Gap Junctions in Amphibian Development.”J. Embryol. exp. Morph. 89S, 365–380.

    Google Scholar 

  • —, S. C. Guthrie and N. B. Gilula. 1984. “Antibodies to Gap-junctional Proteins Selectively Disrupt Junctional Communication in the Early Amphibian Embryo.”Nature 311, 127–131.

    Article  Google Scholar 

  • Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentiation.”J. theor. Biol. 25, 1–47.

    Article  Google Scholar 

  • Yates, K. 1987. “A Cascading Development Model for Amphibian Embryos.” Ph.D. thesis, Washington State University.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper has been reproduced directly from disc using a LA-TEX system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, K., Pate, E. A cascading development model for amphibian embryos. Bltn Mathcal Biology 51, 549–578 (1989). https://doi.org/10.1007/BF02459966

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459966

Keywords

Navigation