Skip to main content
Log in

Hierarchical evolutive systems: A mathematical model for complex systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The notion of an evolutive hierarchical system proposed in this paper is a mathematical model for systems, like organisms, with more or less complex objects. This model, based on category theory, retains the following characteristics of natural systems: they have an internal organization consisting of components with interrelations; they maintain their organization in time though their components are changing; their components are divided into several levels corresponding to the increasing complexity of their own organization, and the system may be studied at any of these levels (e.g. molecular, cellular...). The state of the system at a given instant is modeled by a category whose objects are its components, the state transition by a functor, a complex object by the (direct) limit of a pattern of linked objects (which describes its internal organization). The properties of limits in a category make it possible to ‘measure’ the emergence of properties for a complex object with respect to its components, and to reduce the study of a hierarchical system to that of its components of the lowest degree and their links. Categorical constructions describe the formation of a hierarchical evolutive system stepwise, by means of the operations: absorption of external objects, destruction of some components, formation of new complex objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Amari, S. and M. A. Arbib. 1977. “Competition and Cooperation in Neural Nets.” InSystems Neuroscience, J. Metzler (Ed.), pp. 119–165. New York: Academic Press.

    Google Scholar 

  • — and Takeuchi, A. 1978. “Mathematical Theory on Formation of Category Detecting Nerve Cells”Biol. Cybernet. 29, 127–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Arbid, M. A. 1966. “Categories of (M, R)-system”.Bull. math. Biol. 28, 511–517.

    Google Scholar 

  • Atlan, M. 1979.L'Organisation Biologique et la Théorie de l'Information. Paris: Hermann.

    Google Scholar 

  • Auger, P. 1983. “Hierarchically Organized Populations: Interaction between Individual, Population and Ecosystem Levels.”Math. Biosci. 65, 269–289.

    Article  MATH  Google Scholar 

  • Baianu, I. C. 1970. “Organismic Supercategories: II. On Multistable Systems.”Bull. math. Biophys. 32, 539–561.

    MATH  MathSciNet  Google Scholar 

  • —. 1971. “Organismic Supercategories and Qualitative Dynamics of Systems.”Bull. math. Biophys. 33, 339–354.

    MATH  Google Scholar 

  • — 1973. “Some Algebraic Properties of (M, R)-systems.”Bull. math. Biol. 35, 213–217.

    Article  MATH  MathSciNet  Google Scholar 

  • — and Marinescu, M. 1974. “A Functorial Construction of (M, R)-systems.”Revue Roum. Math. Pures Appl. 19, 389–391.

    MATH  MathSciNet  Google Scholar 

  • Bastiani (-Ehresmann), A. 1963.Systèmes Guidables et Problèmes d'Optimisation, Rapports I, II, III, IV. Université de Caen.

  • Bateson, G. 1985.La Nature et la Pensée. Paris: Editions Seuil.

    Google Scholar 

  • Bertalanffy, L. von. 1926.Roux' Archiv. 108.

  • —. 1956.Les Problème de la Vie. Paris: Gallimard.

    Google Scholar 

  • Changeux, J.-P. 1983.L'Homme Neuronal. Paris: Fayard.

    Google Scholar 

  • —, Danchin, A. and Courrèges, P. 1973. “A Theory of the Epigenesis of Neuronal Networks by Selective Stabilization of synapses.”Proc. natn. Acad. Sci. U.S.A. 70, 2974–2978.

    Article  MATH  Google Scholar 

  • Demetrius, L. A. 1966. “Abstract Biological Systems as Sequential Machines: Behavorial Reversbility.”Bull. math. Biophys. 28, 153–160.

    MATH  Google Scholar 

  • Ehresmann, A. C. 1983. “Comments on Part IV-I”. In:Charles Ehresmann: Oeuvres Complètes et Commentées, Part IV, pp. 323–395. Amiens.

  • — and Ehresmann, C. 1972. “Categories of Sketched Structures.”Cah. Top. Géom. Diff.,XIII-2, 105–214.

    MathSciNet  Google Scholar 

  • — and Vanbremeerch, J. P. 1986. “Un modèle mathematique pour le Systèmes Vivants, basé sur la Théorie des Catégories.”C. R. Acad. Sci. Paris 302, Série III, 475–478.

    Google Scholar 

  • Ehresmann, C. 1965.Categories et Structures. Paris: Dunod.

    MATH  Google Scholar 

  • Eilenberg, S. and MacLane, S. 1945. “General Theory of Natural Equaivalences.”Trans. Am. math. Soc. 58, 231–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Foerster, H. von. 1959. “On Self-organizing Systems and their Environment.” In:Selforganizing Systems, Yoritz and Cameron (Eds), pp. 31–50, New York: Pergamon Press.

    Google Scholar 

  • Gray, J. W. 1966 “Fibred and Cofibred Categories.”Proceedings Conference on Categorical Algebra at La Jolla, 1965, pp. 21–83. New York: Springer.

    Google Scholar 

  • Jacob, F. 1970La Logique du Vivant. Paris: Gallimard.

    Google Scholar 

  • Kan, D. M. 1958. “Adjoint Functors.”Trans. Am. math. Soc. 89, 294–329.

    Article  MathSciNet  Google Scholar 

  • Koestler, A. 1965Le Cri d'Archimède. Paris: Calmann-Levy.

    Google Scholar 

  • Laborit, H. 1983.La Colombe Assassinée: Paris: Grasset.

    Google Scholar 

  • Lawvere, F. W. 1965. “Metric Spaces, Generalized Logic, and Closed Categories.”Rc. Semin. mat. fis. Milano.

  • — 1980. “Toward the Description in a Smooth Topos of the Dynamically Possible Motions and Deformations of a Continuous Body.”Cah. Top. Géom. Diff. XXI-4, 377–392.

    MathSciNet  Google Scholar 

  • Lindenmayer, A. H. 1968. “Mathematical Models for Cellular Interactions in Development. Parts I and II.”J. theor. Biol. 18, 280–315.

    Article  Google Scholar 

  • Louie, A. H. 1983. “Categorical System Theory and the Phenomenological Calculus.”Bull. math. Biol. 45, 1029–1045. (b) “Categorical System Theory.”Bull. Math. Biol. 45, 1047–1072.

    MATH  MathSciNet  Google Scholar 

  • MacLane, S. 1971.Categories for the Working Mathematician. New York: Springer.

    Google Scholar 

  • Mink'o, A. A. and Petunin, Yu. I. 1981. “Mathematical Modeling of Short-term Memory.” Kibernetika2, 282–297.

    Google Scholar 

  • Morin, E. 1977.La Méthode. Paris: Editions Seuil.

    Google Scholar 

  • Nelson, P. 1978.La Logique des Neurones et du Système Nerveux. Paris: Maloine.

    Google Scholar 

  • Piaget, J. 1967.Biologie et Connaissance. Paris: Gallimard.

    Google Scholar 

  • Rapoport, A. 1947. “Mathematical Theory of Motivational Interaction of Two Individuals.” Parts I and II.Bull. math. Biophys. 9, 17–28 and 41–61.

    Google Scholar 

  • Rashevsky, N. 1967. “Organismic Sets. Outline of a General Theory of Biological and Sociological Organisms.”Bull. math. Biophys. 29, 139–152.

    MATH  Google Scholar 

  • — 1968. “Organismic Sets II. Some General Considerations.”Bull. math. Biophys. 30, 163–174.

    MATH  Google Scholar 

  • Rosen, R. 1958. “The Representation of Biological Systems from the Standpoint of the Theory of Categories.”Bull. math. Biophys. 20, 245–260. (b) “A Relational Theory of Biological Systems.”Bull. math. Biophys. 20, 317–341.

    MathSciNet  Google Scholar 

  • — 1959. “A Relational Theory of Biological Systems II.”Bull. math. Biophys. 21, 109–128.

    MathSciNet  Google Scholar 

  • — 1969. “Hierarchical Organization in Automata Theoretic Models of the Central Nervous System.” In:Information Processing in the Nervous System, pp. 21–35. New York: Springer.

    Google Scholar 

  • — 1972. “Some Relational Cell Models: the Metabolic-Repair System.” In:Foundations of Mathematical Biology, Vol. 2, pp. 217–253. New York: Academic Press.

    Google Scholar 

  • — 1978. “Feedforwards and Global System Failures: A General Mechanism for Senescence.”J. theor. Biol. 74, 579–590.

    Article  Google Scholar 

  • — 1980.Modelling: an Algebraic Perspective. Multigraphed. Halifax: Dalhousie University.

    Google Scholar 

  • — 1981. “Pattern Generation in Networks.”Progress in Theoretical Bioscience. Vol. 6, pp. 161–209. New York: Academic Press.

    Google Scholar 

  • — 1982.Category-theoretic Aspects of Morphogenesis, I. Multigraphed. Halifax: Dalhousie University.

    Google Scholar 

  • — 1983.The Role of Similarity Principles in Data Extrapolation. Multigraphed. Halifax: Dalhousie University.

    Google Scholar 

  • Thom, R. 1974.Modèles Mathématiques de la Morphogenèse. Paris: Union Générale d'Edition, Coll. 10/18.

    Google Scholar 

  • Thurstone, L. L. 1931. “The Indifference Function.”J. Soc. Psychol. 2, 139–167.

    Article  Google Scholar 

  • Warner, M. W. 1982. “Representations of (M, R)-systems by Categories of Automata.”Bull. math. Biol. 44, 661–668.

    Article  MATH  MathSciNet  Google Scholar 

  • Watslawick, P., Helminck Beavin J. and Jackson, D. D. 1967.Progmatics of Human Communication. New York: Norton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehresmann, A.C., Vanbremeersch, J.P. Hierarchical evolutive systems: A mathematical model for complex systems. Bltn Mathcal Biology 49, 13–50 (1987). https://doi.org/10.1007/BF02459958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459958

Keywords

Navigation