Skip to main content
Log in

Stochastic models for toxicant-stressed populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We obtain conditions for the existence of an invariant distribution on (0, ∞) for stochastic growth models of Ito type. We interpret the results in the case where the intrinsic growth rate is adjusted to account for the impact of a toxicant on the population. Comparisons with related results for ODE models by Hallamet al. are given, and consequences of taking the Stratonovich interpretation for the stochastic models are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Butler, G., H. I. Freedman and P. Waltman. 1986. Uniformly persistent systems.Proc. Am. math. Soc. 96, 425–430.

    Article  MATH  MathSciNet  Google Scholar 

  • DeAngelis, D. L., R. A. Goldstein and R. V. O'Neill. 1975. A model for trophic interaction.Ecology 56, 881–982.

    Article  Google Scholar 

  • Gallopin, G. C. 1971. A generalized model of a resource-population system: I. General properties. II. Stability analysis.Oecologia 7, 382–413;7, 414–432.

    Article  Google Scholar 

  • Gard, T. C. 1988.Introductions to Stochastic Differential Equations. New York: Marcel Dekker.

    Google Scholar 

  • Gard, T. C. 1990. A stochastic model for the effects of toxicants on population.Ecol. Modelling 51, 273–280.

    Article  Google Scholar 

  • Goel, N. S. S. C. Maitra and E. W. Montroll. 1971 On the Volterra and other nonlinear models of interacting populations.Rev. Mod. Phys. 43, 231–276.

    Article  MathSciNet  Google Scholar 

  • Gompertz, B. 1925. On the nature of the function expressive of the law of human mortability.Phil. Trans. 115, 513–585.

    Google Scholar 

  • Hallam, T. G. 1986. Population dynamics in a homogeneous environment. InMathematical Ecology, T. G. Hallam and S. A. Levin (Eds). Berlin: Springer-Verlag.

    Google Scholar 

  • Hallam, T. G. and Ma Zhien. 1986. Persistence in population models with demographic fluctuations.J. math. Biol. 24, 327–339.

    MATH  MathSciNet  Google Scholar 

  • Ma Zhien Song Baojun and T. G. Hallam. 1989. The threshold of survival for systems in a fluctuating environment.Bull. math. Biol. 51 311–323.

    Article  Google Scholar 

  • Rosenzweig, M. 1971. The paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science 171, 385–387.

    Google Scholar 

  • Smith, F. E. 1963. Population dynamics in Daphnia magna and a new model for population growth.Ecology 44, 651–663.

    Article  Google Scholar 

  • Vance, R. R. 1990. Population growth in a time-varying environment.Theor. Pop. Biol. 37, 438–454.

    Article  MATH  MathSciNet  Google Scholar 

  • Vance R. R. and E. A. Coddington. 1989. A nonautonomous model of population growth.J. math. Biol. 27, 491–506.

    Article  MATH  MathSciNet  Google Scholar 

  • Wong, E. and M. Zakai. 1965. On the convergence of ordinary integrals to stochastic integrals.Ann. math. Stat. 36, 1560–1564.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gard, T.C. Stochastic models for toxicant-stressed populations. Bltn Mathcal Biology 54, 827–837 (1992). https://doi.org/10.1007/BF02459932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459932

Keywords

Navigation