Skip to main content
Log in

Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The nonlinear behavior of a particular Kolmogorov-type exploitation differential equation system assembled by May (1973,Stability and Complexity in Model Ecosystems, Princeton University Press) from predator and prey components developed by Leslie (1948,Biometrica 35, 213–245) and Holling (1973,Mem. Entomol. Soc. Can. 45, 1–60), respectively, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature dependent mite interaction on fruit trees. The most significant result of this analysis is that, in addition to the temperature ranges over which the single community equilibrium point of the system iseither globally stableor gives rise to a globally stable limit cycle, there can also exist a range wherein multiple stable states occur. These stable states consist of a focus (spiral point) and a limit cycle, separated from each other in the phase plane by an unstable limit cycle. The ecological implications of such metastability, hysteresis and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system and the biological control of mite populations are discussed. It is further suggested that a model of this sort which possesses a single community equilibrium point may be more useful for representing outbreak phenomena, especially in the presence of oscillations, than the non-Kolmogorov predator-prey systems possessing three community equilibrium points, two of which are stable and the other a saddle point, traditionally employed for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arrowsmith, D. K. and C. M. Place. 1982.Ordinary Differential Equations. London: Chapman and Hall.

    Google Scholar 

  • Bazykin, A. D. 1974. “Volterra's System and the Michaelis-Menten Equation”. InProblems in Mathematical Genetics, V. A. Ratner (Ed.), pp 103–142. Novosibirsk: U.S.S.R. Acad. Sci.

    Google Scholar 

  • Beddington, J. R., C. A. Free and J. H. Lawton. 1976. “Concepts of Stability and Resilience in Predator-Prey Models”.J. Anim. Ecol.,45, 791–816.

    Article  Google Scholar 

  • Berryman, A. A. 1987. “The Theory and Classification of Outbreaks”. InInsect Outbreaks, P. Barbosa and J. C. Schultz (Eds), pp. 3–30. New York: Academic Press.

    Google Scholar 

  • Caughley, G. 1976. “Plant-Herbivore Systems”. InTheoretical Ecology: Principles and Applications, R. M. May (Ed.), pp. 94–113. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Danby, J. M. A. 1985.Computing Applications to Differential Equations. Reston, VA; Reston Publishing Co.

    Google Scholar 

  • Doedel, E. J. 1984. “The Computer-Aided Bifurcation Analysis of Predator-Prey Models”.J. math. Biol. 20, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Drazin, P. G. and W. H. Reid. 1981.Hydrodynamic Stability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fransz, H. G. 1974.The Functional Response to Prey Density in an Acarine System (Simulation Monographs). Wageningen: Pudoc.

    Google Scholar 

  • Hainzl, J. 1988. “Stability and Hopf Bifurcation in a Predator-Prey System with Several Parameters”.SIAM J. appl. Math. 48, 170–190.

    Article  MATH  MathSciNet  Google Scholar 

  • Harrison, G. W. 1986. “Multiple Stable Equilibria in a Predator-Prey System”.Bull. math. Biol. 41, 137–148.

    Article  MathSciNet  Google Scholar 

  • Hassell, M. P. 1978.The Dynamics of Arthropod Predator-Prey Systems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hastings, A. and D. J. Wollkind. 1982. “Age-Structure in Predator-Prey Systems. I. A. General Model and a Specific Example”.Theor. Pop. Biol. 21, 44–56.

    Article  MATH  MathSciNet  Google Scholar 

  • Holling, C. S. 1965. “The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation”,Mem. Entomol. Soc. Can. 45, 1–60.

    Google Scholar 

  • —. 1973. “Resilience and Stability of Ecological Systems”.Ann. Rev. Ecol. Sys. 4, 1–23.

    Article  Google Scholar 

  • Huffaker, C. B., K. P. Shea and S. G. Herman. 1963. “Experimental Studies on Predation (III). Complex Dispersion and Levels of Food in an Acarine Predator-Prey Interaction”.Hilgardia 34, 305–330.

    Google Scholar 

  • Kareiva, P. and G. M. Odell. 1987. “Swarms of Predators Exhibit ‘Preytaxis’ if Individual Predators Use Area Restricted Search”.Am. Nat. 130, 233–270.

    Article  Google Scholar 

  • Kolmogorov, A. N. 1936. “Sulla Teoria di Volterra della Lotta per l'Esistenza”.Gior. Instituto Ital. Attuari 7, 74–80.

    MATH  Google Scholar 

  • Leslie, P. H. 1948. “Some Further Notes on the Use of Matrices in Population Matheamtics”.Biometrica 35, 213–245.

    Article  MATH  MathSciNet  Google Scholar 

  • Logan, J. A. 1977. “Population Model of the Association ofTetranychus mcdanieli (Acarina: Tetranychidae) withMetaseiulus occidentalis (Acarina: Phytoseiidae) in the Apple Ecosystem”. Ph.D. Dissertation, Washington State University, Pullman.

    Google Scholar 

  • Logan, J. A. 1982. “Recent Advances and New Directions inPhytoseiid Population Models”. InRecent Advances in Knowledge of the Phytoseiidae, M. A. Hoy (Ed.), pp. 49–71. Division of Agricultural Sciences Publication 3284, University of California.

  • — and D. W. Hilbert. 1983. “Modeling the Effect of Temperature on Arthropod Population System”. InAnalysis of Ecological Systems: State of the Art in Ecological Modeling, W. K. Lauenroth, G. V. Skogerboe and M. Flug (Eds), pp. 113–122. Amsterdam: Elsevier.

    Google Scholar 

  • —, D. J. Wollkind, S. C. Hoyt and L. K. Tanigoshi. 1976. “An Analytic Model for Description of Temperature Dependent Rate Phenomena in Arthropods”.Envir. Entomol. 5, 1130–1140.

    Google Scholar 

  • Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Ludwig, D., D. D. Jones and C. S. Holling. 1978. “Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest”.J. Anim. Ecol. 47, 315–332.

    Article  Google Scholar 

  • May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton NJ: Princeton University Press.

    Google Scholar 

  • —. 1977. “Thresholds and Breakpoints in Ecosystems with a Multiplicity of Stable States”.Nature 269, 471–477.

    Article  Google Scholar 

  • —. 1981. “Models for Two Interacting Populations” InTheoretical Ecology: Principles and Applications (2nd Edn), R. M. May (ed.), pp. 78–104. Oxford: Blackwell.

    Google Scholar 

  • Okubo, A. 1980.Diffusion and Ecological Problems: Mathematical Models. New York: Springer-Verlag.

    Google Scholar 

  • Plant, R. E. and M. Mangel. 1987. “Modeling and Simulation in Agricultural Pest Management”.SIAM Review 29, 235–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Rescigno, A. and I. W. Richardson. 1967. “The Struggle for Life—I. Two Species”.Bull. math. Biophys. 29, 377–388.

    Google Scholar 

  • — and —. 1973. “The Deterministic Theory of Population Dynamics”. InFoundations of Matheamtical Biology, R. Rosen (Ed.), pp. 283–360. New York: Academic Press.

    Google Scholar 

  • Rosenzweig, M. L. 1971. “Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time”.Science 171, 385–387.

    Google Scholar 

  • Sabelis, M. W. and W. E. M. Laane. 1986. “Regional Dynamics of Spider-Mite Populations That Become Extinct Locally Because of Food Source Depletion and Predation byPhytoseidd Mites”. InDynamics of Physiologically Structured Populations, J. A. J. Metz and O. Diekmann (Eds), Lecture Notes in Biomathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • — and J. van der Meer. 1966. “Local Dynamics of the Interaction between Predatory Mites and Two-Spotted Spider Mites”. InDynamics of Physiologically Structured Populations, J. A. J. Metz and O. Diekmann (Eds), Lecture Notes in Biomathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • Segel, L. A. 1972. “Simplification and Scaling”.SIAM Review 14, 547–571.

    Article  MATH  MathSciNet  Google Scholar 

  • Takafuji, A., Y. Tsuda and T. Miki. 1983. “System Behavior in Predator-Prey Interaction, with Special Reference to Acarine Predator-Prey System”.Res. Popul. Ecol. Suppl.3, 75–92.

    Google Scholar 

  • Taylor, F. 1979. “Convergence to Stable Age Distribution in Populations of Insects”.Am. Nat. 113, 511–530.

    Article  Google Scholar 

  • Volterra, V. 1926. “Variazioni e Fluttuazioni del Numero d'Individui in Specie Animali Conviventi”.Mem. Acad. Lincei. 2, 31–113.

    Google Scholar 

  • Wangersky, P. J. 1978. “Lotka-Volterrra Population Models”.Ann. Rev. Ecol. Syst. 7, 189–218.

    Article  Google Scholar 

  • Wollkind, D. J. and J. A. Logan. 1978. “Temperature-Dependent Predator-Prey Mite Ecosystem on Apple Tree Foliage”.J. math. Biol. 6, 265–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollkind, D.J., Collings, J.B. & Logan, J.A. Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees. Bltn Mathcal Biology 50, 379–409 (1988). https://doi.org/10.1007/BF02459707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459707

Keywords

Navigation