Skip to main content
Log in

On the heterogeneity of reaction-diffusion generated pattern

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Several current reaction-diffusion mechanisms have been proposed as models for morphogenesis in the Turing (1952,Phil. Trans. R. Soc. Lond. B 237, 37–72) sense. We introduce and exploit a quantity, we have termed heterogeneity, which allows us to elaborate the differences between the various models with regard to spatial pattern formation. It is shown that this quantity provides a concise view for the comparison of theoretical models with experimental observations. Two model mechanisms are treated explicitly both for linear and for biased diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aris, R. 1975.The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Oxford: Clarendon Press.

    Google Scholar 

  • Auchmuty, J. G. and G. Nicolis. 1975. “Bifurcation Analysis of Nonlinear Reaction-Diffusion-Equations—I”.Bull. math. Biol.,37, 1–43.

    Article  MathSciNet  Google Scholar 

  • Brown, K. J. and J. C. Eilbeck 1982. “Bifurcation, Stability Diagrams, and Varying Diffusion Coefficients in Reaction-Diffusion-Equations”.Bull. math. Biol. 44, 87–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Kai Lai Chung. 1974.Elementary Probability Theory with Stochastic Processes. Berlin: Springer.

    Google Scholar 

  • Conway, E. D. Hoff and J. Smoller. 1978. “Large Time Behaviour of Solutions of Systems of Nonlinear Reaction-diffusion Equations”.SIAM. J. appl. Math. 35, 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • Crank, J. 1975.Mathematics of Diffusion, 2nd Edn. Oxford: Oxford University Press.

    Google Scholar 

  • Dick, D. A. T. 1959. “The Rate of Diffusion of Water in the Protoplasm of Living Cells”.Expl Cell Res. 17, 5–13.

    Article  Google Scholar 

  • Erneux, T. and E. L. Reiss. 1984. “Singular Secondary Bifurcation”.SIAM J. appl. Math. 44(3).

  • Gierer, A. and H. Meinhardt. 1972. “A Theory of Biological Pattern Formation”.Kybernetik 12, 30–39.

    Article  Google Scholar 

  • — S. Berking, H. Bode, C. N. David, K. Flick, G. Hansmann, H. Schaller and E. Trenckner. 1972. “Regeneration of Hydra from Reaggregated Cells”.Nature New Biol. 239, 98–101.

    Article  Google Scholar 

  • Haken, H. 1978.Synergetics. An Introduction. Berlin: Springer.

    Google Scholar 

  • Kubicek, M., V. Ryzler and M. Marek. 1978. “Spatial Structures in a Reaction-Diffusion System—Detailed Analysis of the Brusselator”.Biophys. Chem. 8, 235–256.

    Article  Google Scholar 

  • Li, R.-S. and G. Nicolis. 1981. “Bifurcation Phenomena in Nonideal Systems”.J. Phys. Chem. 85, 1912–1918.

    Article  Google Scholar 

  • Marek, M. and M. Kubicek. 1981. “Morphogen Pattern Formation and Development in Growth”.Bull. math. Biol. 43, 259–270.

    MATH  MathSciNet  Google Scholar 

  • Meinhardt, H. 1982.Models of Biological Pattern Formation. London: Academic Press.

    Google Scholar 

  • Murray, J. D. 1977.Lectures on Nonlinear-Differential-Equation Models in Biology. Oxford: Clarendon Press.

    Google Scholar 

  • — 1981. “A Pre-pattern Formation Mechanisms for Animal Coat Markings”.J. theor. Biol. 88, 161.

    Article  Google Scholar 

  • — 1982. “Parameter Space for Turning Instability in Reaction-Diffusion Mechanism: a Comparison of Models”.J. theor. Biol. 98, 143–163.

    Article  Google Scholar 

  • Nandapurkar, P. and V. Hlavacek. 1984. “Concentration-dependent Diffusion Coefficient and Dissipative Structures”.Bull. math. Biol. 40, 269–282.

    Article  Google Scholar 

  • Othmer, H. G. 1977. “Current Problems in Pattern Formation”.Lecture Notes Math. 9, 57.

    MATH  MathSciNet  Google Scholar 

  • Rosen, G. 1975. “Solutions to Systems of Nonlinear Reaction-Diffusion Equations”.Bull. math. Biol. 37, 277–288.

    Article  MATH  MathSciNet  Google Scholar 

  • Sattinger, D., 1973.Topics in Stability and Bifurcation Theory.Lecture Notes Math. Vol. 308. Berlin: Springer.

    Google Scholar 

  • Smirnov, V. I. 1964.A Course of Higher Mathematics, Vol. V. Oxford: Pergamon Press.

    Google Scholar 

  • Smoller, J. 1983.Shock Waves and Reaction-Diffusion Equations. Berlin: Springer.

    Google Scholar 

  • Thomas, D. 1975. “Artificial Enzyme Membranes, Transport, Memory and Oscillatory Phenomena”. InInternational Symposium on Analysis and Control of Immobilized Enzyme Systems, D. Thomas and J. P. Kernevez (Eds), pp. 115–150.

  • Turing, A. M. 1952. “The Chemical Basis of Morphogenesis”.Phil. Trans. R. Soc. Lond. B 237, 37–72.

    Google Scholar 

  • Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentiation”.J. theor. Biol. 25, 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berding, C. On the heterogeneity of reaction-diffusion generated pattern. Bltn Mathcal Biology 49, 233–252 (1987). https://doi.org/10.1007/BF02459700

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459700

Keywords

Navigation