Skip to main content
Log in

Stochastic models for subpopulation emergence in heterogeneous tumors

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A stochastic analog to a deterministic model describing subpopulation emergence in heterogeneous tumors is developed. The resulting system is described by the Fokker-Planck or forward Kolmogorov equation. A finite element approach for the numerical solution to this equation is described. Four biological and clinical scenarios are simulated (emergence of heterogeneity, exclusion of a subpopulation, and induction of drug resistance in both pure and heterogeneous tumors). The results of the simulations show that the stochastic model describes the same basic dynamics as its deterministic counterpart via a convective component, but that for each simulation a distribution of tumor sizes and mixes can also be derived from a diffusive component in the model. These distributions yield estimates for subpopulation extinction probabilities. The biological and clinical relevance of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Becker, E. B., G. F. Carey and J. T. Oden. 1981.Finite Elements—An Introduction, Volume I. New Jersey: Prentice-Hall.

    Google Scholar 

  • Coldman, A. J., J. H. Goldie and V. Ng. 1985. “The Effects of Cellular Differentiation on the Development of Permanent Drug Resistance.”Math. Biosci. 74, 177–198.

    Article  MATH  Google Scholar 

  • Day, R. S. 1986. “A Branching Process Model for Heterogeneous Cell Populations.”Math. Biosci. 78, 73–90.

    Article  MATH  MathSciNet  Google Scholar 

  • De, S. S. 1984. “Random Predator-Prey Interactions in a Varying Environment Colon Extinction or Survival.”Bull. math. Biol. 46, 175–184.

    MATH  MathSciNet  Google Scholar 

  • Dexter, D. L., E. N. Spremulli, Z. Fligiel, J. A. Barbosa, R. Vogel, A. Van Voorhees and P. Calabresi. 1988. “Heterogeneity of Cancer Cells from a Single Human Carcinoma.”Am. J. Med. 71, 949–956.

    Article  Google Scholar 

  • Fleming, W. H. and R. W. Rishel. 1975.Deterministic and Stochastic Optimal Control. New York: Springer.

    Google Scholar 

  • Glowinski, R. 1984.Numerical Methods for Nonlinear Variational Problems New York: Springer.

    Google Scholar 

  • Goldie, J. H. and A. J. Coldman. 1979. “A Mathematical Model for Relating the Drug Sensitivity of Tumors to their Spontaneous Mutation Rate.”Cancer Treat. Rep. 63, 1727–1733.

    Google Scholar 

  • Gresho, P. M. and R. L. Lee. 1979. “Don't Suppress the Wiggles—They're Telling You Something!”Finite Elements Methods for Convection Dominated Flows, T. J. R. Hughes (ed.), pp. 37–61. New York: American Society for Mechanical Engineering.

    Google Scholar 

  • Harrison, G. W. 1988. Numerical Solution of the Fokker-Planck Equation Using Moving Finite Elements.”Numer. Methods Partial Differential Equations 4, 219–232.

    Article  MATH  MathSciNet  Google Scholar 

  • Inagaki, H. 1982. “Selection under Random Mutations in Stochastic Eigen Model.”Bull. math. Biol. 44, 17–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Jansson, B. and I. Revesz. 1974. “Analysis of the Growth of Tumor Cell Populations.”Math. Biosci. 19, 131–154.

    Article  MATH  Google Scholar 

  • Leith, J. T., S. Michelson, L. E. Faulkner and S. Bliven. 1987. “Growth Properties of Artificial Heterogeneous Human: Tumors.”Cancer Res. 47, 1045–1051.

    Google Scholar 

  • —, L. E. Faulkner, S. F. Bliven and S. Michelson. 1988a. “Compositional Stability of Artificial Heterogeneous Tumors in vivo: use of Mitomycin C as a Cytotoxic Probe.”Cancer Res. 48, 2669–2673.

    Google Scholar 

  • —, L. E. Faulkner, S. F. Bliven and S. Michelson. 1988b. “Tumor Bed Expression in Xenografted Artificial Heterogeneous Colon Tumors”Int. J. Radiat. Oncol. Biol. Phys. 15, 151–158.

    Google Scholar 

  • Michelson, S., B. E. Miller, A. S. Glicksman and J. T. Leith. 1987.Tumor Micro-Ecology and Competitive Interactions.J. theor. Biol. 128, 233–246.

    Article  MathSciNet  Google Scholar 

  • — and J. T. Leith. 1988a. “Effects of Differential Cell Kill on the Dynamic Composition of Heterogeneous Tumors.”J. theor. Biol.,128, 233–246. in press.

    Article  MathSciNet  Google Scholar 

  • —, and —. 1988b. “Introduction of Subpopulation Exclusion within Heterogeneous Tumors by Environmental Stress.”Radiat. Res. 115, 533–542.

    Google Scholar 

  • Mortensen, R. E. 1969. “Mathematical Problems of Modeling Stochastic Nonlinear Dynamic Systems.”J. Stat. Phys. 1, 271–296.

    Article  Google Scholar 

  • Peaceman, D. H. and H. H. Rachford. 1955. “The Numerical Solution of Parabolic and Elliptic Differential Equations.J. Soc. ind. appl. Math. 3, 28–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Turelli, M. 1977. “Random Environments and Stochastic Calculus.”Theor. Popul. Biol. 12, 140–178.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research support provided in part by ACS Grant IN45-Z and ACS PDT 243 B.

Research support provided in part by the National Science Foundation under NSF Grant MCS-8504316, and by the Air Force Office of Scientific Research under Contract F49620-86-C-0111.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelson, S., Ito, K., Tran, H.T. et al. Stochastic models for subpopulation emergence in heterogeneous tumors. Bltn Mathcal Biology 51, 731–747 (1989). https://doi.org/10.1007/BF02459658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459658

Keywords

Navigation