Skip to main content
Log in

Modeling immune reactivity in secondary lymphoid organs

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Models of the dynamical interactions important in generating immune reactivity have generally assumed that the immune system is a single well-stirred compartment. Here we explicitly take into account the compartmentalized nature of the immune system and show that qualitative conclusions, such as the stability of the immune steady state, depend on architectural details. We examine a simple model idiotypic network involving only two types of B cells and antibody molecules. We show, for model parameters used by De Boeret al. (1990,Chem. Eng. Sci. 45, 2375–2382), that the immune steady state is unstable in a one compartmental model but stable in a two compartment model that contains both a lymphoid organ, such as the spleen, and the circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aris, R. 1969.Elementary Chemical Reactor Analysis. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Atiya, A. and P. Baldi. 1989. Oscillations and synchronizations in neural networks: An exploration of the labeling hypothesis.Int. J. Neural. Sys. 1, 103–124.

    Article  Google Scholar 

  • Brahim, F. and D. G. Osmond. 1970. Migration of bone marrow lymphocytes demonstrated by selective bone marrow labelling with3H-thymidine.Anat. Rec. 168, 139.

    Article  Google Scholar 

  • Coutinho, A. 1989. Beyond clonal selection and network.Immunol. Rev. 110, 63–87.

    Article  Google Scholar 

  • De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability and suppression, InTheoretical Immunology, Part Two, SFT Studies in the Sciences of Complexity, Vol. 3, A. S. Perelson (Ed.), pp. 265–289. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.

    Article  MATH  Google Scholar 

  • De Boer, R., I. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Eng. Sci. 45, 2375–2382.

    Article  Google Scholar 

  • De Boer, R. J. and A. S. Perelson. 1991. Size and connectivity as emergent properties of a developing immune network.J. theor. Biol. 149, 381–424.

    Google Scholar 

  • Doedel, E. J. 1981. AUTO: a program for the bifurcation analysis of autonomous systems.Cong. Num. 30, 265–285.

    MATH  MathSciNet  Google Scholar 

  • Freitas, A. A., B. Rocha, L. Forni and A. Coutinho. 1982. Population dynamics of B lymphocytes and their precursors: demonstration of high turnover in the central and peripheral lymphoid organs.J. Immunol. 128, 54–60.

    Google Scholar 

  • Freitas, A. A., B. Rocha and A. Coutinho. 1986. Life span of B lymphocytes: The experimental basis for conflicting results.J. Immunol. 136, 470–476.

    Google Scholar 

  • Freitas, A. A., P. Pereira, F. Huetz, V. Thomas-Vaslin, C. Pena-Rossi, L. Andrade, A. Sundblad, L. Forni and A. Coutinho. 1989. B cell activities in normal unmanipulated mice. InB Lymphocytes: Function and Regulation, P. Del Guercio and J. M. Cruse (Eds.), pp. 1–26. Basel: Karger.b

    Google Scholar 

  • Hoffmann, G. W. 1975. A theory of regulation and self-nonself discrimination in an immune network.Eur. J. Immunol. 5, 638–647.

    Google Scholar 

  • Hood, L. E., I. L. Weismann, W. B. Wood and J. H. Wilson. 1984.Immunology, 2nd Edn. Menlo Park, CA: Benjamin/Cummings.

    Google Scholar 

  • Hooijkaas, H., R. Benner, J. R. Pleasants and B. S. Wostmann, 1984. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet.J. Immunol. 14, 1127–1130.

    Google Scholar 

  • Jerne, N. K. 1973. The immune system.Sci. Am. 229, 25–60.

    Article  Google Scholar 

  • Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immunol. (Inst. Pasteur).125 C, 373–389.

    Google Scholar 

  • Kaufman, M. 1988. Role of multistability in an immune response model: A combined discrete and continuous approach. InTheoretical Immunology, Part One, SFI Studies in the Sciences of Complexity, A. S. Perelson (Ed.), pp. 199–222. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Kaneko, K. (1989). Pattern dynamics in spatiotemporal chaos. Pattern selection, diffusion of defect and pattern competition intermittency.Physica D 34, 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Lèvy, M., P. Vieira, A. Coutinho and A. A. Freitas. 1987. The majority of ‘natural’ immunoglobulin-secreting cells are short-lived and the progeny of cycling lymphocytes.Eur. J. Immunol 17, 849–854.

    Google Scholar 

  • Lundkvist, I., A. Coutinho, F. Varela and D. Holmberg. 1989. Evidence for a functional idiotypic network amongst natural antibodies in normal mice.Proc. natn Acad Sci., U.S.A. 86, 5074–5078.

    Article  Google Scholar 

  • Pereira, P., L. Forni, E.-L. Larsson M. D. Cooper, C. Heuser and A. Coutinho (1986). Autonomous activation of B and T cells in antigen-free mice.Eur. J. Immunol. 16, 685–688.

    Google Scholar 

  • Perelson, A. S. 1988. Toward a realistic model of the immune system. InTheoretical Immunology, Part Two, SFI Studies in the Sciences of Complexity, A. S. Perelson (Ed.), pp. 377–401. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Perelson, A. S. (1989). Immune network theory.Immunol. Rev. 110, 5–36.

    Article  Google Scholar 

  • Richter, P. H. 1975. A network theory of the immune system.Eur. J. Immunol. 5, 350–354.

    Google Scholar 

  • Richter, P. H. 1978. The network idea and the immune response. InTheoretical Immunology, G. I. Bell, A. S. Perelson and G. H. Pimbley Jr. (Eds), pp. 539–569. New York: Marcel Dekker.

    Google Scholar 

  • Rodkey, L. S. and F. L. Adler. 1983. Regulation of natural antiallotype antibody responses in idiotype network-induced auto-antiidiotypic antibodies.J. exp. Med 157, 1920–1931.

    Article  Google Scholar 

  • Segel, L. A. and A. S. Perelson (1989). Shape space analysis of immune networks. InCell to Cell Signalling: From Experiments to Theoretical Models, A. Goldbeter (Ed.), pp. 273–283. New York: Academic Press.

    Google Scholar 

  • Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.

    Article  Google Scholar 

  • Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115.

    MathSciNet  Google Scholar 

  • Varela, F. J., A. Coutinho, B. Dupire and N. N. Vaz. 1988. Cognitive networks: immune, neural, and otherwise. InTheoretical Immunology, Part Two, A. S. Perelson (Ed.), SFI Studies in the Sciences of Complexity, Vol. 3, pp. 359–375. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Vieira, P. and K. Rajewsky 1988. The half-lives of serum immunoglobulins in adult mice.Eur. J. Immunol. 18, 313–316.

    Google Scholar 

  • Weisbuch, G. 1990. A shape space approach to the dynamics of the immune system.J. theor. Biol. 143, 507–522.

    MathSciNet  Google Scholar 

  • Weisbuch, G. 1991.Complex System Dynamics, SFI Studies in the Sciences of Complexity, Lecture Notes Vol. II. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Weisbuch, G., R. De Boer and A. S. Perelson 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499.

    Google Scholar 

  • Weiss, L. 1972.The Cells and Tissues of the Immune System. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was performed under the auspices of the U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perelson, A.S., Weisbuch, G. Modeling immune reactivity in secondary lymphoid organs. Bltn Mathcal Biology 54, 649–672 (1992). https://doi.org/10.1007/BF02459638

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459638

Keywords

Navigation