Skip to main content
Log in

Quantitative PCR: Procedures and precisions

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a multitype branching-process model for the Polymerase Chain Reaction (PCR). We apply the model to a comparison of three methods for estimating the initial number of molecules of target present in a PCR. These three methods are: one which uses a coamplified, internal control; one which uses an external control series; and one which uses simple extrapolation of log outputvs time (no control). We identify assumptions for each method which permit mathematical analysis of bias and precision. All three methods perform well if: (1) replication efficiencies are stable among reactions; (2) other method-specific conditions on efficiencies are met; and (3) product accumulates exponentially throughout the range where it is observed. When replication efficiencies vary among reactions but other optimal conditions for each method hold, the no-control and external-control methods lose precision relative to the internal control method, but they may still perform satisfactorily for many applications. The internal control method continues to perform well even if accumulation of product plateaus. This method depends, however, on a condition we call equivalence of replication efficiencies, the attainability of which in practice remains to be proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abbott, M. A., B. J. Poiesz, B. C. Byrne, S. Kwok, J. J. Sninsky and G. D. Ehrlich. 1988. Enzymatic gene amplification: qualitative and quantitative methods for detecting proviral DNA amplifiedin vitro.J. infect. Dis. 158, 1158–1169.

    Google Scholar 

  • Becker-Andre, M. and K. Hahlbrock. 1989. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY).Nucl. Acids Res. 17, 9437–9446.

    Google Scholar 

  • Chelly, J., J.-C. Kaplan, P. Maire, S. Gautron and A. Khan. 1988. Transcription of the dystrophin gene in human muscle and non-muscle tissues.Nature 333, 858–860.

    Article  Google Scholar 

  • Chelly, J., D. Montarras, C. Pinset, Y. Berwald-Netter, J.-C. Kaplan and A. Kahn. 1990. Quantitative assessment of minor mRNA’s by cDNA-polymerase chain reaction. Application to dystrophin mRNA in cultured myogenic and brain cells.Eur. J. Biochem. 18, 691–698.

    Article  Google Scholar 

  • Davis, G. R., K. Blumeyer, L. J. DiMichele, K. M. Whitfield, H. Chappelle, N. Riggs, S. S. Ghosh, P. M. Kao, E. Fahy, D. Y. Kwoh, J. C. Guatelli, S. A. Spector, D. D. Richman and T. R. Gingeras. 1990. Detection of human immunodeficiency virus type 1 in AIDS patients using amplification-mediated hybridization analyses: Reproducibility and quantitative limitations.J. infect. Dis. 162, 13–20.

    Google Scholar 

  • Gilliland, G., S. Perrin, K. Blanchard and H. F. Bunn. 1990. Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction.Proc. natn. Acad. Sci. USA 87, 2725–2729.

    Article  Google Scholar 

  • Guatelli, J. C., T. R. Gingeras and D. D. Richman. 1989. Nucleic acid amplificationin vitro: Detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.Clin. Microbiol. Rev. 2, 217–226.

    Google Scholar 

  • Harju, L., P. Janne, A. Kallio, M.-L. Laukkanen, I. Lautenschlager, S. Mattinen, A. Ranki, M. Ranki, V. R. X. Soares, H. Soderlund and A.-C. Syvanen. 1990. Affinity-based collection of amplified viral DNA: application to the detection of human immunodeficiency virus type 1, human cytomegalovirus, and human papillomavirus type 16.Molec. cell. Probes 4, 223–235.

    Article  Google Scholar 

  • Jeffreys, A. J., V. Wilson, R. Neumann and J. Keyte. 1988. Amplification of human minisatellites by the polymerase chain reaction: Towards DNA fingerprinting of single cells.Nucl. Acids Res. 16, 10953–10971.

    Google Scholar 

  • Katz, J. P., E. T. Bodin and D. M. Coen. 1990. Quantitative polymerase chain reaction of Herpes Simplex virus DNA in ganglia of mice infected with replication-incompetent mutants.J. Virol. 64, 4288–5295.

    Google Scholar 

  • Kellogg, D. E. and S. Kwok. 1990. Detection of human immunodeficiency virus. InPCR Protocols: A Guide to Methods and Applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Eds), pp. 337–347. San Diego, CA: Academic Press.

    Google Scholar 

  • Kellogg, D. E., J. J. Sninsky and S. Kwok. 1990. Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain reaction.Analyt. Biochem. 189, 202–208.

    Article  Google Scholar 

  • Krawczak, M., J. Reiss, J. Schmidtke and U. Rosler. 1989. Polymerase chain reaction: replication errors and reliability of gene diagnosis.Nucl. Acids Res. 17, 2197–2201.

    Google Scholar 

  • Linz, U. 1990. Thermocycler temperature variation invalidates PCR results.Bio Techniques 9, 286–292.

    Google Scholar 

  • Linz, U., U. Delling and H. Ruebsamen-Waigmann. 1990. Systematic studies on parameters influencing the performance of the polymerase chain reaction.J. clin. Chem. clin. Biochem. 28, 5–13.

    Google Scholar 

  • Mode, C. J. 1971.Multiple Branching Process, Theory and Applications. New York: Elsevier.

    Google Scholar 

  • Mullis, K. B. and F. A. Faloona. 1987. Specific synthesis of DNAin vitro via a polymerase-catalyzed chain reaction.Meth. Enzym. 155, 335–350.

    Article  Google Scholar 

  • Nedelman, J., P. Heagerty and C. Lawrence. 1992.Quantitative PCR with internal controls. Technical Report Series 1990 No. 2, University at Albany School of Public Health, Department of Biometry and Statistics, CABIOS, in press.

  • Noonan, K. E., C. Beck, T. A. Holzmayer, J. E. Chin, J. S. Wunder, I. L. Andrulis, A. F. Gazdar, C. L. Willman, B. Griffith, D. D. Von Hoff and I. B. Robinson. 1990. Quantitative analysis ofMDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction.Proc. natn. Acad. Sci. USA 87, 7160–7164.

    Article  Google Scholar 

  • Rappolee, D. A., A. Wang, D. Mark and Z. Werb. 1989. Novel method for studying mRNA phenotypes in single or small numbers of cells.J. cell. Biochem. 39, 1–11.

    Article  Google Scholar 

  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239, 487–491.

    Google Scholar 

  • Seber, G. A. F. 1977.Linear Regression Analysis. New York: Wiley.

    MATH  Google Scholar 

  • Syvanen, A.-C., M. Bengstrom, J. Tenhunen and H. Soderlund. 1988. Quantification of polymerase chain reaction products by affinity-based hybrid collection.Nucl. Acids Res. 16, 11327–11338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedelman, J., Heagerty, P. & Lawrence, C. Quantitative PCR: Procedures and precisions. Bltn Mathcal Biology 54, 477–502 (1992). https://doi.org/10.1007/BF02459631

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459631

Keywords

Navigation