Skip to main content
Log in

Autocatalytic networks with translation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the kinetics of an autocatalytic reaction network in which replication and catalytic actions are separated by a translation step. We find that the behaviour of such a system is closely related to second-order replicator equations, which describe the kinetics of autocatalytic reaction networks in which the replicators act also as catalysts. In fact, the qualitative dynamics seems to be described almost entirely be the second-order reaction rates of the replication step. For two species we recover the qualitative dynamics of the replicator equations. Larger networks show some deviations, however. A hypercyclic system consisting of three interacting species can converge toward a stable limit cycle in contrast to the replicator equation case. A singular perturbation analysis shows that the replication-translation system reduces to a second-order replicator equation if translation is fast. The influence of mutations on replication-translation networks is also very similar to the behavior of selection-mutation equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arneodo, A., P. Coullet, J. Peyraud, and C. Tresser. 1992. Strange attractors in Volterra equations for species competitions.J. Math. Biol. 14, 153–157.

    Article  MathSciNet  Google Scholar 

  • Arneodo, A., P. Coullet, and C. Tresser. 1980. Occurrence of strange attractors in three-dimensional Volterra equations.Phys. Lett. A 79, 259–263.

    Article  MathSciNet  Google Scholar 

  • Bauer, G. J. 1989. Traveling waves of in vitro evolving RNA.Proc. Natl. Acad. Sci. U.S.A. 86, 7937–4179.

    Article  Google Scholar 

  • Biebricher, C. K., M. Eigen, W. C. Gardiner, Jr., and R. Luce. 1983. Kinetics of RNA replications.Biochemistry 22, 2544–2599.

    Article  Google Scholar 

  • Biebricher, C. K., M. Eigen, W. C. Gardiner, Jr., and R. Luce. 1984. Kinetics of RNA replication: competition and selection among self-replicating RNA species.Biochemistry 23, 6550–6560.

    Article  Google Scholar 

  • Biebricher, C. K., M. Eigen, W. C. Gardiner, Jr., and R. Luce. 1985. Kinetics of RNA replication: plus-minus asymmetry and double strand formation.Biochemistry 24, 3186–3194.

    Article  Google Scholar 

  • Cech, T. 1986. RNA as an enzyme.Sci. Am. 11, 76–84.

    Google Scholar 

  • Cech, T. R. 1988. Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review.Gene 73, 259–271.

    Article  Google Scholar 

  • Doudna, J., S. Couture, and J. Szostak. 1991. A multi-subunit ribozyme that is a catalyst of and a template for complementary-strand RNA synthesis.Science 251, 1605–1608.

    Google Scholar 

  • Doudna, J., N. Usman, and J. Szostak. 1993. Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA.Biochemistry 32, 2111–2115.

    Article  Google Scholar 

  • Eigen, M. 1971. Self-organization of matter and the evolution of macromolecules.Naturwiss.58, 465–523.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1977. The hypercycle: A. Emergence of the hypercycle.Naturwiss.64, 541–565.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1978a. The hypercycle: B. The abstract hypercycle.Naturewiss.65, 7–41.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1978b. The hypercycle: C. The realistic hypercycle.Naturwiss.65, 341–369.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1979.The Hypercycle. New York: Springer-Verlag.

    Google Scholar 

  • Eigen, M., P. Schuster, K. Sigmund, and R. Wolff. 1980. Elementary step dynamics of catalytic hypercycles.BioSystems 13, 1–22.

    Article  Google Scholar 

  • Famulok, M., J. Nowick, and J. Rebek, Jr. 1992. Self-replicating systems.Act. Chim. Scand. 46, 315–324.

    Article  Google Scholar 

  • Fenichel, N. 1978. Geometric singular perturbation theory for ordinary differential equations.J. Diff. Eqs. 31, 53–98.

    Article  MathSciNet  Google Scholar 

  • Gesteland, R. and J. Atkins (Eds). 1993.The RNA World. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Gilpin, M. E. 1978. Spiral chaos in a predator pray system.Amer. Nat. 133, 306–308.

    MathSciNet  Google Scholar 

  • Gordon, K. H. 1995. Were RNA replication and translation directly coupled in the RNA (+protein?) world?J. Theor. Biol. 173, 179–193.

    Article  Google Scholar 

  • Guerrier-Takada, C. and S. Altman. 1984. Catalytic activity of an, RNA molecule prepared by transcriptionin vitro.Science 223, 285–286.

    Google Scholar 

  • Happel, R. 1994. Dynamics of autocatalytic reaction networks: replication with translation. Master's thesis, University of Vienna.

  • Happel, R. and P. Stadler. 1995. Autocatalytic replication in a CSTR and constant organization. Santa Fe Institute preprint 95-07-062.

  • Hecht, R. 1994. Replicator networks with intermadiates. Ph.D. thesis, University of Vienna.

  • Henry, D. 1978.Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics, Vol. 84. Berlin: Springer-Verlag.

    Google Scholar 

  • Hirsch, M. W. and S. Smale. 1974.Differential Equations. Dynamical Systems, and Linear Algebra. Orlando, FL. Academic Press.

    MATH  Google Scholar 

  • Hofbauer, J. 1981. On the occurrence of limit cycles in Volterra-Lotka equations.Nonlinear Anal. 5, 1003–1007.

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. 1986. Saturated equilibria, permanence, and stability for ecological systems. InProceedings of the Second Autumn Course on Mathematical Ecology, Trieste, Italy.

  • Hofbauer, J., J. Mallet-Paret, and H. L. Smith. 1991. Stable periodic solutions for the hypercycle system.J. Dyn. Diff. Eqs. 3, 423–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund. 1988.Dynamical Systems and the Theory of Evolution. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Knobloch, H. and B. Aulbach. 1984. Singular perturbations and integral maniforlds.J. Math. Phys. Sci. 18, 415–424.

    MATH  MathSciNet  Google Scholar 

  • Murray, J. 1984.Asymptotic Analysis. New York: Springer.

    MATH  Google Scholar 

  • Orgel, L. 1992. Molecular replication.Nature 358, 203–209.

    Article  Google Scholar 

  • O'Malley, J. R. E. 1991.Singular Perturbation Methods for Ordinary Differential Equations. New York: Springer-Verlag, 1991.

    MATH  Google Scholar 

  • Rebek, Jr., J. 1994. Synthetic self-replicating molecules.Sci. Am. 271, 48–57.

    Article  Google Scholar 

  • Schlögl, F. 1972. Chemical reaction models for non-equilibrium phase transitions.Z. Phys. 253, 147–161.

    Article  Google Scholar 

  • Schnabl, W., P. F. Stadler, C. Forst, and P. Schuster. 1991. Full characterization of a strange attractor.Phys. D 48, 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, K. R. 1987. Singularly perturbed autonomous differential systems. InDynamical Systems and Environmental Models, H. Bothe, W. Ebeling, A. Kurzhanski and M. Peschel (Eds). Berlin: VEB-Verlag.

    Google Scholar 

  • Schuster, P. 1986. Mechanisms of molecular evolution. InSelf-Organization, S. Fox (Ed), pp. 57–91. Chicago, IL: Aldnine Press.

    Google Scholar 

  • Schuster, P. and K. Sigmund. 1983. Replicator dynamics.J. Theor. Biol.,100, 533–538.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. and K. Sigmund. 1985. Dynamics of evolutionary optimization.Ber. Bunsen-Gesellsch. Phys. Chem. 89, 668–682.

    Google Scholar 

  • Schuster, P., K. Sigmund, and R. Wolff. 1978. Dynamical systems under constant organisation I. Topologigal analysis of a family of non-linear differential equations—a model for catalytic hypercycles.Bull. Math. Biol. 40, 743–769.

    MathSciNet  Google Scholar 

  • Smith, J. M. and E. Szathmary. 1995.The Major Transitions in Evolution. Oxford: W. H. Freeman.

    Google Scholar 

  • Novick, J. S., Q. Feng, and T. Tjivikua. 1991. Kinetic studies and modeling of a self-replicating system.J. Am. Chem. Soc. 113, 8831–8838.

    Article  Google Scholar 

  • Spiegelman, S. 1971. An approach to the experimental analysis of precellular evolution.Quart. Rev. Biophys. 4, 213–251.

    Article  Google Scholar 

  • Stadler, B. M. R. and P. F. Stadler. 1991. Dynamics of small autocatalytic reaction networks III: monotonous growth functions.Bull. Math. Biol. 53, 469–485.

    MATH  Google Scholar 

  • Stadler, P. F. 1991. Complementary replication.Math. Biosci.,107, 83–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F., W. Fontana, and J. H. Miller. 1993. Random catalytic reaction networks.Phys. D 63, 378–392.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. and J. C. Nuño. 1994. The influence of mutation on autocatalytic reaction networds.Math. Biosci. 122, 127–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F., W. Schnabl, C. V. Forst, and P. Schuster. 1995. Dynamics of autocatalytic reaction networks II: analytically treatable special cases.Bull. Math. Biol. 57, 21–61.

    MATH  Google Scholar 

  • Stadler, P. F. and P. Schuster. 1990. Dynamics of autocatalytic reaction networks I: bifurcations, permanence and exlusion.Bull. Math. Biol. 52, 485–508.

    MATH  Google Scholar 

  • Stadler, P. F. and P. Schuster. 1992. Mutation in autocatalytic networks—an analysis based on perturbation theory.J. Math. Biol. 30, 597–631.

    Article  MATH  MathSciNet  Google Scholar 

  • Streissler, C. 1992. Autocatalytic networks under diffusion. Ph.D. thesis. University of Vienna.

  • Tichonov, A. 1952. Systems of differential equations with a small parameter at the derivatives.Mat. Sbornik 31, 575–586.

    MathSciNet  Google Scholar 

  • Tresser, C. 1984. Homoclinic orbits for flows inR 3 J. Physique 45, 837.

    MathSciNet  Google Scholar 

  • Vance, R. R. 1978. Predation and resource partitioning in one predator—two pray model communities.Amer. Nat. 112, 787–813.

    Article  Google Scholar 

  • von Kiedrowski, G. 1993. Minimal replicator theory I: parabolic versus exponential growth.Bioorganic Chemistry Frontiers, Vol. 3, pp. 115–146, Berlin: Springer-Verlag.

    Google Scholar 

  • Weinberger, E. 1991. Spatial stability analysis of Eigen's quasispecies model and the less than five membered hypercycle under global population regulation.Bull. Math. Biol. 53, 623–638.

    MATH  Google Scholar 

  • Westheimer, F. H. 1986. Polyribonucleic acids as enzymes, news and views.Nature 319, 534–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Happel, R., Hecht, R. & Stadler, P.F. Autocatalytic networks with translation. Bltn Mathcal Biology 58, 877–905 (1996). https://doi.org/10.1007/BF02459488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459488

Keywords

Navigation