Skip to main content
Log in

Controlling spatial chaos in metapopulations with long-range dispersal

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose two methods to control spatial chaos in an ecological metapopulation model with long-range dispersal. The metapopulation model consists of local populations living in a patchily distributed habitat. The habitat patches are arranged in a one-dimensional array. In each generation, density-dependent reproduction occurs first in each patch. Then individuals disperse according to a Gaussian distribution. The model corresponds to a chain of coupled oscillators with long-range interactions. It exhibits chaos for a broad range of parameters. The proposed control methods are based on the method described by Güémez and Matías for single difference equations. The methods work by adjusting the local population sizes in a selected subset of all patches. In the first method (pulse control), the adjustments are made periodically at regular time intervals, and consist of always removing (or adding) a fixed proportion of the local populations. In the second method (wave control), the adjustments are made in every generation, but the proportion of the local population that is affected by the control changes sinusoidally. As long as dispersal distances are not too low, these perturbations can drive chaotic metapopulations to cyclic orbits whose period is a multiple of the control period. we discuss the influence of the magnitude of the pulses and wave amplitudes, and of the number and the distribution of controlled patches on the effectiveness of control. When the controls start to break down, interesting dynamic phenomena such as intermittent chaos can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranson, I., H. Levine and L. Tsimring. 1994. Controlling spatiotemporal chaos.Phys. Rev. Lett. 72, 2561–2564.

    Article  Google Scholar 

  • Astakhov, V. V., V. S. Ansihchenko and A. V. Shabunin. 1995. Controlling spatiotemporal chaos in a chain of coupled logistic maps.IEEE Trans. Circuits Syst. I 42, 352–357.

    Article  Google Scholar 

  • Bellows, T. S., Jr. 1981. The descriptive properties of some models for density dependence.J. Anim. Ecol. 50, 139–156.

    Article  MathSciNet  Google Scholar 

  • Brayman, Y., J. F. Lindner and W. L. Ditto. 1995. Taming spatiotemporal chaos with disorder.Nature 378, 465–467.

    Article  Google Scholar 

  • Chakravarti, S., M. Marek and W. H. Ray. 1995. Reaction-diffusion system with Brusselar kinetics—control of a quasiperiodic route to chaos.Phys. Rev. E 52, 2407–2423.

    Article  Google Scholar 

  • Chow, S. N. and J. Mallet-Paret. 1995. Pattern-formation and spatial chaos in lattice dynamical systems,IEEE Trans. Circuits Syst. I 42, 746–751.

    Article  MathSciNet  Google Scholar 

  • Doebeli, M. 1993. The evolutionary advantage of controlled chaos.Proc. Roy. Soc. London B 254, 281–286.

    Google Scholar 

  • Doebeli, M. 1994. Intermittent chaos in population dynamics.J. Theor. Biol. 166, 325–330.

    Article  Google Scholar 

  • Doebeli, M. 1995a. Dispersal and dynamics.Theor. Pop. Biol. 47, 82–106.

    Article  MATH  Google Scholar 

  • Doebeli, M. 1995b. Updating Gillespie with controlled chaos.Amer. Nat. 146, 479–487.

    Article  Google Scholar 

  • Gavrilets, S. and A. Hastings. 1995. Intermittency and transient chaos from simple frequency-dependent selection.Proc. Roy. Soc. London B 261, 233–238.

    Google Scholar 

  • Gilpin, M. and I. Hanski (Eds). 1991.Metapopulation Dynamics: Empirical and Theoretical Investigations. London: Academic Press.

    Google Scholar 

  • Güémez, J. and M. A. Matías. 1993. Control of chaos in unidimensional maps.Phys. Lett. A 181, 29–32.

    Article  MathSciNet  Google Scholar 

  • Gyllenberg, M., G. Söderbacka and S. Ericsson. 1993. Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model.Math. Biosci. 118, 25–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Hassell, M. P. 1975. Density-dependence in single-species models.J. Anim. Ecol. 44, 283–296.

    Article  Google Scholar 

  • Hassell, M. P., H. N. Comins and R. M. May. 1991. Spatial structure and chaos in insect population dynamics.Nature 353, 255–258.

    Article  Google Scholar 

  • Hastings, A. 1993. Complex interactions between dispersal and dynamics: lessons from coupled logistic equations.Ecology 74, 1362–1372.

    Article  Google Scholar 

  • Hastings, A. and K. Higgins. 1994. Persistence of transients in spatially structured ecological models.Science 263, 1133–1136.

    Google Scholar 

  • Holt, R. D. and M. P. Hassell. 1993. Environmental heretogeneity and the stability to host-parasitoid interactions.J. Anim. Ecol. 62, 89–100.

    Article  Google Scholar 

  • Huffaker, C. B. 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations.Hilgarida 27, 343–383.

    Google Scholar 

  • Levins, R. 1970. Extinction. InSome Mathematical Questions in Biology, M. Gerstenhaber (Ed), pp. 77–107. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Lima, R. and M. Pettini. 1993. Suppression of chaos by resonant parametric perturbations.Phys. Rev. A 41, 726–733.

    Article  MathSciNet  Google Scholar 

  • Lloyd, A. L. 1995. The coupled Logistic map—a simple model for the effects of spatial heterogeneity on population dynamics.J. Theor. Biol. 173, 217–230.

    Article  Google Scholar 

  • May, R. M. and G. F. Oster 1976. Bifurcations and dynamic complexity in simple ecological models.Amer. Nat. 110, 573–599.

    Article  Google Scholar 

  • Maynard Smith, J. and M. Slatkin. 1973. The stability of predator-prey systems.Ecology 54, 384–391.

    Article  Google Scholar 

  • McCallum, H. I. 1992. Effects of immigration on chaotic population dynamics.J. Theor. Biol. 154, 277–284.

    Google Scholar 

  • Ott, E., C. Gregobi and J. A. Yorke. 1990. Controlling chaos.Phys. Rev. Lett. 64, 1196–1199.

    Article  MATH  MathSciNet  Google Scholar 

  • Pomeau, Y. and P. Manneville, 1980. Intermittent transition to turbulence in dissipative dynamical systems.Physica A 74, 189–197.

    MathSciNet  Google Scholar 

  • Ruxton, G. D. 1994. Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles.Proc. Roy. Soc. London B 256, 189–193.

    Google Scholar 

  • Schoener, T. 1976. Alternatives to Lotka-Volterra competition: models of intermediate complexity.Theor. Pop. Biol. 10, 309–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Sepulchre, J. A. and A. Baboyantz. 1993. Controlling chaos in a network of oscillators.Phys. Rev. E 48, 945–950.

    Article  Google Scholar 

  • Shinbrot, T., C. Grebogi, E. Ott and J. A. Yorke. 1993. Using small perturbations to control chaos.Nature 363, 411–417.

    Article  Google Scholar 

  • Solé, R. V. and L. Menéndez de la Prida. 1995. Controlling chaos in discrete neural networks.Phys. Lett. A 199, 65–69.

    Article  Google Scholar 

  • Stone, L. 1993. Period-doubling reversals and chaos in simple ecological models.Nature 365, 617–620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doebeli, M., Ruxton, G.D. Controlling spatial chaos in metapopulations with long-range dispersal. Bltn Mathcal Biology 59, 497–515 (1997). https://doi.org/10.1007/BF02459462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459462

Keywords

Navigation