Skip to main content
Log in

Theoretical effects of radioligand diffusional gradients and microscopic neuroreceptor distribution inin vivo kinetic studies

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simplified one-dimensional model system was used to test the possibility that physically realistic parameters would lead to the prediction of microscopic heterogeneity of radioligand distribution in the brain and that microscopic heterogeneity of radioligand and neuroreceptor distribution could influence the macroscopically observedin vivo kinetics. The model was represented mathematically by a partial differential equation which is similar to the heat diffusion equation, but with special boundary conditions. The equation was solved analytically under the condition of negligible receptor occupancy by inversion of the Laplace transform and in the more general case of arbitrary receptor occupancy by cubic spline approximation. In simulations with physically reasonable values for rate constants and parameters, we find that significant radioligand gradients can occur. Thus, the level of radioligand in the immediate vicinity of the receptor may be substantially different from the average level in a macroscopically measured region of interest.

In order to analyze the simulated data, we derived a rigorous steady-state solution, including both a statement of necessary and sufficient conditions for the validity of the steady-state approximation as well as a demonstration of the proper technique for assessing the consistency of the derived parameter with the requirements of the approximation. The radioligand heterogeneity leads to significant errors in the parameters estimated in the steady-state kinetic analysis. In particular, the pseudo first-order rate constant for radioligand-neuroreceptor association, which is often used as a measure of the total amount of neuroreceptor, is underestimated. The first-order rate constant for radioligand-neuroreceptor dissociation is also underestimated. These effects can partially account for the experimentally-observed discrepancy betweenin vivo andin vitro estimates of these kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Barrodale, I and D. D. Olesky. 1981. “Exponential Approximation Using Prony's Method.” InThe Numerical Solution of Nonlinear Problems, T. H. Baker and C. Phillips (Eds.), pp. 258–269, New York: Oxford University Press.

    Google Scholar 

  • Bass, L. 1985. “Heterogeneity within Observed Regions: Physiologic Basis and Effects on Estimation of Rates of Biodynamic Processes.”Circ. 72 (suppl. IV). IV-47–IV-52

    Google Scholar 

  • Bassingthwaighte, J. B. 1985. “Overview of the Processes of Delivery: Flow, Transmembrane Transport, Reaction, and Retention.”Circ. 72 (suppl, IV), IV-39–IV-46.

    Google Scholar 

  • Chugani, D. C., R. F. Ackermann and M. E. Phelps. 1987. “3H-Spiperone is Trappedin Vivo via Receptor-Mediated Endocytosis.”J. Nucl. Med. 28, 612.

    Google Scholar 

  • Churchill, R. V. 1972.Operational Mathematics, pp. 85–122. New York: McGraw-Hill.

    MATH  Google Scholar 

  • CRC Handbook of Chemistry and Physics, 67th edition. 1986–1987. 1986. Weast, R. C. (Ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Crone, C. 1963. “The Permeability of Capillaries in Various Organs as Determined by Use of the ‘Indicator Diffusion’ Method”.Acta Physiol. Scand. 58, 292–305.

    Article  Google Scholar 

  • Frey, K. A., R. L. E. Ehrenkaufer, S. Beaucage and B.W. Agranoff. 1985. “Quantitativein vivo Receptor Binding—I. Theory and Application to the Muscarinic Cholinergic Receptor.”J. Neurosci. 5, 421–428.

    Google Scholar 

  • Frost, J. J. and H. N. Wagner, Jr. 1984. “Kinetics of Binding to Opiate Receptorsin vivo Predicted fromin vitro Parameters.”Brain Research 305, 1–11.

    Article  Google Scholar 

  • ——, R. F. Dannals, H. T. Ravert, J. M. Links, A. A. Wilson, D. Burns, D. F. Wong, R. W. McPherson, A. E. Rosenbaum, M. J. Kuhar and S. H. Snyder. 1985. “Imaging Opiate Receptors in the Human Brain by Positron Tomography.”J. Comp. Assist. Tomog. 9, 231–236.

    Article  Google Scholar 

  • Gibson, R. E., D. J. Weckstein, E. M. Jagoda, W. J. Rzeszotarski, R. C. Reba and W. C. Eckelman. 1984. “The Characteristics of I-125 4-IQNB and H-3 QNBin vivo andin vitro.”J. Nucl. Med. 25, 214–222.

    Google Scholar 

  • Leysen, J. E., W. Gommeren and P. M. Laduron. 1978. “Spiperone: a Ligand of Choice for Neuroleptic Receptors—1. Kinetics and Characteristics ofin vitro Binding.”Biochem. Pharmac. 27, 307–316.

    Article  Google Scholar 

  • Logan, J., A. P. Wolf, C.-Y. Shiue and J. S. Fowler. 1987. “Kinetic Modelling of Receptor-Ligand Binding Applied to Positron Emission Tomographic Studies with Neuroleptic Tracers.”J. Neurochem. 48, 73–83.

    Google Scholar 

  • Lyon, R. A., M. Titeler, J. J. Frost, P. J. Whitehouse, D. F. Wong, H. N. Wagner, Jr., R. F. Dannals, J. M. Links and M. J. Kuhar. 1986. “3H-3-N-Methylspiperone Labels D2 Dopamine Receptors in Basal Ganglia and S2 Serotonin Receptors in Cerebral Cortex.”J. Neurosci. 6, 2941–2949.

    Google Scholar 

  • Mintun, M. A., M. E. Raichle, M. R. Kilbourn, G. F. Wooten and M. J. Welch. 1984. “A Quantitative Model for thein vivo Assessment of Drug Binding Sites with Positron Emission Tomography.”Ann. Neurol. 15, 217–227.

    Article  Google Scholar 

  • Perlmutter, J. S., K. B. Larson, M. E. Raichle, J. Markham, M. A. Mintun, M. R. Kilbourn and M. J. Welsh. 1986. “Strategies forin vivo Measurement of Receptor Binding Using Positron Emission Tomography.”J. Cereb. Blood Flow Metab. 6, 154–169.

    Google Scholar 

  • Perry, D. C., K. B. Mullis, S. Oie and W. Sadée. 1980. “Opiate Antagonist Receptor BindingIn Vivo: Evidence for a New Receptor Binding Model.”Brain Res. 199, 49–61.

    Article  Google Scholar 

  • Prenter, P. M. 1975.Splines and Variational Methods, New York: Wiley Interscience.

    MATH  Google Scholar 

  • Rice, M. E., G. A. Gerhardt, P. M. Hierl, G. Nagy and R. N. Adams. 1985. “Diffusion Coefficients of Neurotransmitters and their Metabolites in Brain Extracellular Fluid Space.”Neurosci.,15, 891–902.

    Article  Google Scholar 

  • Sadée, W., D. C. Perry, J. S. Rosenbaum and A. Herz. 1982. “[3H]Diprenorphine Receptor BindingIn Vivo andIn Vitro.”Eur. J. Pharmacol. 81, 431–440.

    Article  Google Scholar 

  • Samson, Y., P. Hantraye, J. C. Baron, F. Soussaline, D. Comar and M. Mazière. 1985. “Kinetics and Displacement of [11C]RO 15-1788, a Benzodiazepine Antagonist, Studied in Human Brainin vivo by Positron Tomography.”Eur. J. Pharmacol. 110, 247–251.

    Article  Google Scholar 

  • Sedvall, G., L. Farde, A. Persson and F.-A. Wiesel. 1986. “Imaging of Neurotransmitter Receptors in the Living Human Brain.”Arch. Gen. Psych. 43, 995–1005.

    Google Scholar 

  • Shinotoh, H., T. Yamasaki, O. Inoue, T. Itoh, K. Suzuki, K. Hashimoto, Y. Tateno and H. Ikehira. 1986. “Visualization of Specific Binding Sites of Benzodiazepine in Human Brain.”J. Nucl. Med. 27, 1593–1599.

    Google Scholar 

  • Strang, G. and G. Fix. 1973.An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Wong, D. F., A. Gjedde and H. N. Wagner Jr. 1986a. “Quantification of Neuroreceptors in the Living Human Brain—I. Irreversible Binding of Ligands.”J. Cereb. Blood Flow Metab. 6, 137–146.

    Google Scholar 

  • ———, R. F. Dannals, K. H. Douglass, J. M. Links and M. J. Kuhar. 1986b. “Quantification of Neuroreceptors in the Living Human Brain—II. Inhibition Studies of Receptor Density and Affinity.”J. Cereb. Blood Flow Metab. 6, 147–153.

    Google Scholar 

  • Zeeberg, B. R. and H. N. Wagner, Jr. 1987. “Analysis of Three-and Four-Compartment Models forin vivo Radioligand-Neuroreceptor Interaction.”Bull. math. Biol. 49, 469–486.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeebèrg, B.R., Reid, R.C., Murphy, K.A. et al. Theoretical effects of radioligand diffusional gradients and microscopic neuroreceptor distribution inin vivo kinetic studies. Bltn Mathcal Biology 50, 423–444 (1988). https://doi.org/10.1007/BF02458845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458845

Keywords

Navigation