Skip to main content
Log in

Autocrine and paracrine growth factors in tumor growth: A mathematical model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of tumor growth including autocrine and paracrine control has been developed. The model starts with the logistic equation of Verhulst: dV/dt=rV(1−V/K). Autocrine controls are described as modifiers of the Malthusian growth rate (r), while paracrine controls modify the carrying capacity (K) of the system. The control mechanisms are expressed in terms of “candidate” functions, which are based upon the dynamic distribution of TGF-alpha and TGF-beta in the local tumor environment. Three paradigms of tissue growth have been modeled: normal tissue wound repair, unrestricted, unperturbed tumor growth, and tumor growth in a (radiation) damaged environment (the Tumor Bed Effect, TBE). These scenarios were used to test the dynamics of the system against known phenomena. Computer simulations are presented for each case. The model is being extended to include the description of heterogeneous tumors, within which subpopulations can express differential degrees of growth activity. Heterogeneous tumor models, with and without emergent subpopulations, and models of terminal differentiation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ciampi, A., L. Kates, R. Buick, Y. Kruikov and J. E. Till. 1986. Multi-type Galton-Watson process as a model for proliferating human tumour cell populations derived from stem cells: estimation of stem cell self-renewal probabilities in human ovarian carcinomas.Cell Tiss. Kinet. 19, 129–140.

    Google Scholar 

  • Coffey, R. J. Jr., G. D. Shipley and H. L. Moses. 1986. Production of transforming growth factors by human colon cancer lines.Cancer Res. 46, 1164–1169.

    Google Scholar 

  • Coffey, R. J. Jr., A. S. Goustin, A. M. Soderquist, G. D. Shipley, J. Wolfshohl, G. Carpenter and H. L. Moses. 1987. Transforming growth factor alpha and beta expression in human colon cancer lines: implications for an autocrine model.Cancer Res. 47, 4590–4594.

    Google Scholar 

  • Delthlefsen, L. A., J. M. Prewitt and M. L. Mendelsohn. 1968. Analysis of tumor growth curves.JNCI 40, 389.

    Google Scholar 

  • Goustin, A. S., E. B. Loef, G. D. Shipley and H. L. Moses. 1986. Growth factors and cancer.Cancer Res. 46, 1015–1029.

    Google Scholar 

  • Heppner, G. H. 1989. Tumor cell societies.JNCI 81, 648–649.

    Google Scholar 

  • Howe, P. H., C. C. Bascom, M. R. Cunningham and E. B. Loef. 1989. Regulation of transforming growth factor-beta action by multiple transducing pathways: evidence for both G protein-dependent and- independent signalling.Cancer Res. 49, 6024–6031.

    Google Scholar 

  • Ignotz, R. A. and J. Massague. 1986. Transforming growth factor beta stimulates the expression of fibronectin and collagen and their incorporation in the extracellular matrix.J. biol. Chem. 261, 4337–4345.

    Google Scholar 

  • Itaya, T., J.-G. Judde, B. Hurt and P. Frost. 1989. Genotypic and phenotypic evidence of clonal interactions in murine tumor cells.JNCI 81, 664–668.

    Google Scholar 

  • Jansson, B. and L. Revesz. 1975. Analysis of the growth of tumor cell populations.Math. Biosci. 19, 131–154.

    Article  Google Scholar 

  • Keski-Oja, J., A. E. Postlethwaite and H. L. Moses. 1988. Transforming growth factors in the regulation of malignant cell growth and invasion.Cancer Invest. 6, 705–724.

    Google Scholar 

  • King, I. and A. C. Sartorelli. 1989. Epidermal growth factor receptor gene expression protein kinase activator, and terminal differentiation of human malignant epidermal cells.Cancer Res. 49, 5677–5681.

    Google Scholar 

  • Knochel, W. and H. Tiedemann. 1989. Embryonic inducing growth factors, transcription factors, and oncogenes.Cell Diff. Devel. 26, 163–171.

    Article  Google Scholar 

  • Leith, J. T., S. Michelson, L. E. Faulkner and S. Bliven. 1987. Growth properties of artificial heterogeneous human colon tumors.Cancer Res. 47, 1045–1051.

    Google Scholar 

  • Leith, J. T., L. E. Faulkner, S. F. Bliven and S. Michelson. 1988a. Tumor bed expression in xenografted artificial heterogeneous tumors.Int. J. Radiat. Oncol. Biol. Phys. (in press).

  • Leith, J., L. E. Faulkner, S. F. Bliven and S. Michelson. 1988b. Compositional stability of artificial heterogeneous tumorsin vivo: use of mitomycin C as a cytotoxic probe.Cancer Res. 48, 2669–2673.

    Google Scholar 

  • Leith, J. T., S. Michelson and A. S. Glicksman. 1988c. Competitive exclusion of clonal subpopulations in heterogeneous tumours after stromal injury.Br. J. Cancer (in press).

  • Loef, E. B., J. A. Proper, A. S. Goustin, G. D. Shipley, P. E. DiCorleto and H. L. Moses. 1986. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity.Proc. natn. Acad. Sci. U.S.A. 83, 2453–2457.

    Article  Google Scholar 

  • Lyons, J. G., K. Siew and R. O'Grady. 1989. Cellular interactions determining the production of collagenase by a rat mammary carcinoma cell line.Int. J. Cancer 43, 119–125.

    Google Scholar 

  • Mayneord, W. V. 1932. On the law of growth of Jensen's rat sarcoma.Am. J. Cancer 16, 841.

    Google Scholar 

  • Michelson, S., A. S. Glicksman and J. T. Leith. 1987a. Growth in solid heterogeneous human colon adenocarcinoma; comparison of simple logistic models.Cell Tiss. Kinet. 20, 343–355.

    Google Scholar 

  • Michelson, S., B. E. Miller, A. S. Glicksman and J. T. Leith. 1987b. Tumor microecology and competitive interactions.J. theor. Biol. 128, 233–246.

    Article  MathSciNet  Google Scholar 

  • Milas, L., H. Ito, N. Hunter, S. Jones and L. J. Peters. 1986. Retardation of tumor growth in mice caused by radiation-induced injury to tumor bed stroma: dependency on the tumor type.Cancer Res. 46, 723–727.

    Google Scholar 

  • Roberts, A. B., M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern and M. B. Sporn. 1985. Type beta transforming growth factor: a bifunctional regulator of cellular growth.Proc. natn. Acad. Sci. U.S.A. 82, 119–123.

    Article  Google Scholar 

  • Shipley, G. D., C. B. Childs, M. E. Volkenant and H. L. Moses. 1984. Differential effects of epidermal growth factor, transforming growth factor, and insulin on DNA and protein synthesis and morphology in serum-free cultures of AKR-2B cells.Cancer Res. 44, 710–716.

    Google Scholar 

  • Sonnenschein, N. C. and A. M. Soto. 1989. Symposium on the control of cell proliferation and cancer.Cancer Res. 49, 6161.

    Google Scholar 

  • Sporn, M. B. and A. B. Roberts. 1985. Autocrine growth factors and cancer.Nature 313, 745–747.

    Article  Google Scholar 

  • Sporn, M. B. and G. J. Todaro. 1980. Autocrine secretion and malignant transformation of cells.New Engl. J. Med. 303, 878–880.

    Article  Google Scholar 

  • Steel, G. G. and L. F. Lamerton. 1966. The growth rate of human tumors.Br. J. Cancer 20, 74.

    Google Scholar 

  • Tucker, R. F., M. E. Volkenant, E. L. Branum and H. L. Moses. 1983. Comparison of intra- and extracellular transforming growth factors from nontransformed and chemically transformed mouse embryo cells.Cancer Res. 43, 1581–1586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Grant No. CA50350.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelson, S., Leith, J. Autocrine and paracrine growth factors in tumor growth: A mathematical model. Bltn Mathcal Biology 53, 639–656 (1991). https://doi.org/10.1007/BF02458633

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458633

Keywords

Navigation