Skip to main content
Log in

The thalamocortical contribution to epilepsy

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The experimental literature has dealt intensively with the cortical contribution to epilepsy. Possibly because of the direction of technological advance, much less attention has been paid to the role of other structures. A model which emphasizes the role of some of those non-cortical structures, specifically that of thalamocortical modulation of cortical excitability, is developed. Some aspects of the petit mal seizure, a seizure type considered by some investigators to involve thalamocortical mechanisms, are predicted by the model. Although the thalamocortical mechanisms under study are not the only mechanism underlying seizures, a full understanding of the phenomenology of epilepsy needs to take into account the role of subcortical modification of cortical activities in addition to other mechanisms.

Gloor has described two types of epileptogenesis: type I characteristic of non-convulsive seizure and type II characteristic of convulsions. There is disagreement as to whether or not the two mechanisms represent qualitatively different phenomena. Utilizing the thalamocortical model, it can be shown that the two types of epileptogenesis are qualitatively different. Furthermore, the thalamocortical model leads to a possible explanation of clinically different profiles of antipileptic efficacy of medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ajmone-Marsan, C. 1969, Pathophysiology of the EEG pattern characteristic of petit mal epilepsy, a critical review of some of the experimental data. InThe Physiopathogenesis of the Epilepsies, H. Gastaut, H. Jasper, J. Bancaud and A. Waltregny (eds), pp. 237–248. Springer, IL: Charles C. Thomas.

    Google Scholar 

  • Andersen, P., S. A. Andersson and T. Lømo. 1967a. Some factors involved in the thalamic control of spontaneous barbiturate spindles.J. Physiol., Lond. 192, 257–281.

    Google Scholar 

  • Andersen, P., S. A. Andersson and T. Lømo. 1967b. Nature of thalamo-cortical relations during spontaneous barbiturate spindle activity.J. Physiol., Lond. 192, 283–307.

    Google Scholar 

  • Angel, A. 1967. Cortical responses to paired stimuli applied peripherally and at sites along the somato-sensory pathway.J. Physiol., Lond. 191, 427–448.

    Google Scholar 

  • Angevine Jr., J. B. and C. W. Cotman. 1981.Principles of Neuronatomy. Oxford University Press.

  • Anninos, P. A., B. Beek, T. J. Csermely, E. M. Harth and G. Pertile. 1970. Dynamics of neural structures.J. theor. Biol. 26, 121–148.

    Article  Google Scholar 

  • Anninos, P. A. and R. A. Cyrulnik. 1977. A neural net model for the epilepsy.J. theor. Biol. 66, 695–709.

    Article  Google Scholar 

  • Anninos, P. A. and S. Zenone. 1980. A neural net model for the α-rhythm.Biol. Cybern. 36, 187–191.

    Article  Google Scholar 

  • Aquino-Cías, J. and J. Bureš. 1967. Seizure irradiation during functional elimination of the thalamus by spreading depression in the rat.Epilepsia 8, 47–57.

    Article  Google Scholar 

  • Avoli, M. 1988. Primary generalized seizures with spike and wave discharge. In:Mechanisms of Epileptogenesis, M. A. Dichter (ed.), pp. 73–83. New York: Plenum.

    Google Scholar 

  • Avoli, M. and P. Gloor. 1982. Role of the thalamus in generalized penicillin epilepsy: observations on decorticated cats.Exp. Neurol. 77, 396–402.

    Article  Google Scholar 

  • Avoli, M., P. Gloor, G. Kostopoulos and J. Gotman. 1983. An analysis of pencillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.J. Neurophysiol. 50, 819–837.

    Google Scholar 

  • Beurle, R. L. 1956. Properties of a mass of cells capable of regenerating pulses.Phil. Trans. R. Soc. B240, 55–94.

    Google Scholar 

  • Blinkov, S. M. and I. I. Glezer. 1968.The Human Brain in Figures and Tables (translated from Russin by B. Haigh). New York: Plenum.

    Google Scholar 

  • Bok, S. T. 1959.Histonomy of the Cerebral Cortex. Amsterdam: Elsevier.

    Google Scholar 

  • Čapek, R. and B. Esplin. 1977. Effects of ethosuximide on transmission of repetitive impulses and apparent rates of transmitter turnover in the spinal monosynaptic pathways.J. Pharmac. exp. Ther. 201, 320–325.

    Google Scholar 

  • Carpenter, M. B. and J. Sutin. 1983.Human Neuroanatomy, 8th edn. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Chan, S. H. H. and H. J. Wing. 1978. A computer analysis of factors influencing the cerebello-thalamo-cortical signals.Comp. Biomed. Res. 11, 481–489.

    Article  Google Scholar 

  • Chatt, A. B. and J. S. Ebersole. 1988. Coparisons between strychnine and penicillin epileptogenesis suggest that propagating abnormalities require the potentiation of thalamocortical circuitry in neocortical layer 4.Exp. Neurol. 100, 365–380.

    Article  Google Scholar 

  • Coulter, D. A., J. R. Hugenard and D. A. Prince. 1989. Characteristics of ethosuximide reduction of low threshold calcium current in thalamic neurons.Ann. Neurol. 25, 582–593.

    Article  Google Scholar 

  • Creutzfeldt, O. D. 1974.The Neuronal Generation of the EEG. InHandbook of Electroencephalography and Clinical Neurophysiology. Vol. 2C, A. Rémond (ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Creutzfeldt, O. D. 1978. The neocortical link: thoughts on the generality of structure and function of the neocortex. In:Architectonics of the Cerebra Cortex. M. A. B. Brazier and H. Petsche (eds), pp. 357–383. New York: Raven.

    Google Scholar 

  • Desiraju, T., G. Broggi, S. Prelevic, M. Santini and D. P. Purpura. 1969. Inhibitory synaptic pathways linking specific and nonspecific thalamic nuclei.Brain Res. 15, 542–543.

    Article  Google Scholar 

  • Engel Jr., J. 1987. New concepts of the epileptic focus. In:The Epileptic Focus, H. G. Wieser, E. J. Speckman and J. Engels Jr (eds), pp. 83–94. London, John Libbey.

    Google Scholar 

  • Epstein, C. M. and M. R. Andriola. 1983.Introduction to EEG and Evoked Potentials. Philadelphia: J. B. Lippincott.

    Google Scholar 

  • Everett, G. M. and R. K. Richards. 1944. Comparative anticonvulsant action of 3,5,5-trimethyloxazolidine-2,4-dione (tridione), dialantin and phenobarbital.J. Pharmac. exp. Ther. 81, 402–407.

    Google Scholar 

  • Fromm, G. H. 1986. Role of inhibitory mechanisms in staring spells.J. Clin. Neurophysiol. 3, 297–311.

    Google Scholar 

  • Fromm, G. H. 1987a. The brain-stem and convulsions: historical overview. In:Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures. G. H. Fromm, C. L. Fairgold, R. A. Browning and W. M. Burnham (eds), pp. 1–8. New York: Alan R. Liss.

    Google Scholar 

  • Fromm, G. H. 1987b. The brain-stem and seizures: summary and synthesis. In:Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures. G. H. Fromm, C. L. Faingold, R. A. Browning and W. M. Burnham (eds), pp. 203–218. New York: Alan R. Liss.

    Google Scholar 

  • Fromm, G. H., J. D. Glass, A. S. Chattha, A. J. Martinez and M. Silverman. 1980. Anti-absence drugs and inhibitory pathways.Neurology 30, 126–131.

    Google Scholar 

  • Gabor, A. J., R. P. Scobey and C. J. Wehrli. 1979. Relationship of epileptogenicity of cortical organization.J. Neurophysiol. 42, 1609–1625.

    Google Scholar 

  • Gale, K. and R. A. Browning. 1988. Anatomical and neurochemical substrates of clonic and tonic seizures. In:Mechanisms of Epileptogenesis. M. A. Dichter (ed.), pp. 111–152. New York: Plenum.

    Google Scholar 

  • Gastaut, H. 1969. Introduction to the study of the generalized epilepsies. InThe Physiopathogenesis of the Epilepsies. H. Gastaut, H. Jasper, J. Bancaud and A. Waltregny (eds), pp. ix-xvi. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Gibbs, F. A. and E. L. Gibbs. 1952.Atlas of Electroencephalography, Vol. 2: Epilepsy. Cambridge, MA: Addison Wesley.

    Google Scholar 

  • Gloor, P. 1968. Generalized cortico-reticular epilepsies.Epilepsia 9, 249–263.

    Google Scholar 

  • Gloor, P. 1979. Generalized epilepsy with spike-and-wave discharge: a reinterpretation of its electrographic and clinical manifestations.Epilepsia 20, 571–588.

    Google Scholar 

  • Gloor, P. 1984. Electrophysiology of epilepsy. In:Electrophysiology of Epilepsy, P. A. Schwartzkroin and H. Wheal (eds), pp. 107–136. London: Academic Press.

    Google Scholar 

  • Gloor, P. 1989. Epilepsy: relationship between electrophysiology and intracellular mechanisms involving second messengers and gene expression.Can. J. Neurol. Sci. 16, 8–21.

    Google Scholar 

  • Gloor, P. and R. Fariello. 1988. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy.Trends Neurosci. 11, 63–68.

    Article  Google Scholar 

  • Goldensohn, E. S. 1985. Neurophysiological approaches to basic mechanisms of seizures. In:The Epilepsies, R. J. Porter and P. L. Morselli (eds), pp. 20–39. London: Butterworths.

    Google Scholar 

  • Goldman-Rakic, P. S. 1988. Changing concepts of cortical connectivity: parallel distributed cortical networks. In:Neurobiology of Neocortex, P. Rackic and W. Singer (eds), pp. 177–202. Chichester. Wiley.

    Google Scholar 

  • Gutnick, M. J. and D. A. Prince. 1975. Effects of projected cortical epileptiform discharges on neuronal activities in ventrobasal thalamus of cat: ictal discharge.Exp. Neurol. 46, 418–431.

    Article  Google Scholar 

  • Harmon, L. D. and E. R. Lewis. 1966. Neural modeling.Physiol. Rev. 46, 513–591.

    Google Scholar 

  • Harth, E. M., T. J. Csermely, B. Beek, and R. D. Lindsay. 1970. Brain functions and neural dynamics.J. theor. Biol. 26, 93–120.

    Article  Google Scholar 

  • Hastings, N. A. J. and J. B. Peacock. 1974.Statistical Distributions. New York: Wiley.

    Google Scholar 

  • Herkenham, M. 1986. New perspectives on the organization and evolution of nonspecific thalamocortical projections. In:Cerebral Cortex, Vol 5: Sensory-Motor, Areas and Aspects of Cortical Connectivity, E. G. Jones and A. Peters (eds), pp. 403–443. New York: Plenum.

    Google Scholar 

  • Holmes, G. L. 1985. Neonatal, seizures. In:Recent Advances in Epilepsy 2, T. A. Pedley and B. S. Meldrum (eds), pp. 207–237. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Jasper, H. H. 1949. Diffuse projection systems: the integrative action of the thalamic reticular system.Electroenceph. clin. Neurophysiol. 1, 405–420.

    Google Scholar 

  • Jasper, H. H. 1969. Mechanisms of propagation: extracellular studies. In:Basic Mechanisms of the Epilepsies, H. H. Jasper, A. A. Ward Jr. and A. Pope (eds), pp. 421–438. Boston: Little Brown.

    Google Scholar 

  • Jeffreys, J. G. R. and R. Roberts. 1987. The biology of epilepsy. In:Epilepsy, A. Hopkins (ed.), pp. 19–81. New York: Demos.

    Google Scholar 

  • Jones, E. G. 1984. Organization of the thalamocortical complex and its relation to sensory processes. In:Handbook of Physiology, Section I: The Nervous System, Volume III. Sensory Processes, Part I, J. M. Brookhart and V. B. Mountcastle (eds), pp. 149–212. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Jones, E. G. 1988. What are the local circuits? In:Neurobiology of Neocortex, P. Rakic and W. Singer (eds), pp. 137–152. Chichester: Wiley.

    Google Scholar 

  • Kaczmarek, L. K. and A. Babloyantz. 1977. Spatiotemporal patterns in epileptic seizures.Biol Cybern. 26, 199–208.

    Article  MATH  Google Scholar 

  • Kaplan, B. J. 1977. Phenobarbital and phenytoin effects on somatosensory evoked potentials and spontaneous EEG in normal cat brain.Epilepsia 18, 397–403.

    Google Scholar 

  • Kokkinidis M. and P. Anninos. 1985. Noisy neural nets exhibiting epileptic features.J. theor. Biol. 113, 559–588.

    Article  Google Scholar 

  • Kostopoulos, G. 1982. Potentiation and modification of recruiting responses precedes the appearance of spike and wave discharges in feline generalized penicillin epilepsy.Electroenceph. clin. Neurophysiol. 53, 467–478.

    Article  Google Scholar 

  • Kostopoulos, G., M. Avoli and P. Gloor. 1983. Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy.Brain Res. 267, 101–112.

    Article  Google Scholar 

  • Kusske, J. A. 1976. Interactions between thalamus and cortex in experimental epilepsy in the cat.Exp. Neurol. 50, 568–578.

    Article  Google Scholar 

  • Lánský, P. 1984. On approximations of Stein's neuronal model.J. theor. Biol. 107, 631–647.

    Google Scholar 

  • Louis, S., H. Kutt and F. McDowell. 1968. Intravenous, diphenylhydantoin in experimental seizures. II. Effects on penicillin-induced seizures in the cat.Arch. Neurol. (Chic.) 18, 472–477.

    Google Scholar 

  • Macchi, G. and M. Bentivoglio. 1986. The thalamic intralaminar nuclei and the cerebral cortex. InCerebral Cortex, Vol. 5: Sensory-Motor Areas and Aspects of Cortical Connectivity, E. G. Jones and A. Peters (eds), pp. 355–401. New York: Plenum.

    Google Scholar 

  • Marcus, E. M. and W. Watson. 1966. Bilateral synchronous spike wave electrographic patterns in the cat.Arch. Neurol. (Chic.) 14, 601–610.

    Google Scholar 

  • McDonald, R. L. 1983. Mechanisms of anticonvulsant drug action. InRecent Advances in Epilepsy, 1, T. A. Pedley and B. S. Meldrum (eds), pp. 1–23. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Miles, R., R. D. Traub and R. K. S. Wong. 1988. Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus.J. Neurophysiol. 60, 1481.

    Google Scholar 

  • Miller, J. W., C. M. Hall, K. D. Holland, J. A. Ferrendelli. 1989. Identification of a median thalamic system regulating seizures and arousal.Epilepsia 30, 493–500.

    Google Scholar 

  • Morselli, P. L. and K. G. Lloyd. 1985. Mechanism of action of antiepileptic drugs. In:The Epilepsies, R. J. Porter and P. L. Morselli (eds), pp. 40–81. London: Butterworths.

    Google Scholar 

  • Muir, A. 1981. The construction of homogeneous nets.Bull. math. Biol. 43, 415–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Noebels, J. and D. A. Prince. 1978. Excitability changes in thalamocortical relay neurons during synchronous discharges in cat neocortex.J. Neurophysiol. 41, 1282–1296.

    Google Scholar 

  • Nowack, W. J., R. N. Johnson, R. N. Englander and G. R. Hanna. 1979. Effects of valproate and ethosuximide on thalamocortical excitability.Neurology (NY) 29, 96–99.

    Google Scholar 

  • Nowack, W. J., R. N. Johnson and G. R. Hanna. 1983. Development of the thalamocortical augmenting response in the kitten.Epilepsia 24, 193–199.

    Google Scholar 

  • Ogden, T. E. 1960. Cortical control of thalamic somato-sensory relay nuclei.Electroenceph. clin. Neurophysiol. 12, 621–634.

    Article  Google Scholar 

  • Pakkenberg, H. 1966. The number of nerve cells in the cerebral cortex of man.J. Comp. Neurol. 128, 17–19.

    Article  Google Scholar 

  • Parzen, E. 1962.Stochastic Processes. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Penfield, W. and H. Jasper. 1954.Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown.

    Google Scholar 

  • Prince, D. A. 1988. Functional properties of neocortical neurons. In:Neocortex, P. Rakic and W. Singer (eds), pp. 153–176. Chichester: Wiley.

    Google Scholar 

  • Prince, D. A. and B. W. Connors. 1986. Mechanism of interical epileptogenesis. In:Basic Mechanisms of the Epilepsies: Molecular and Cellular Approaches (Advances in Neurology, Vol. 44), A. V. Delgado-Escueta, A. A. Ward, D. M. Woodbury and R. J. Porter (eds), pp. 275–299. New York: Raven.

    Google Scholar 

  • Purpura, D. P. 1970. Operations and processes in thalamic and synaptically related subsystems. In:The Neurosciences, F. O. Schmitt (ed.), pp. 458–470. New York: Rockefeller University.

    Google Scholar 

  • Purpura, D. P. and B. Cohen. 1962. Intracellular recording from thalamic neurons during recruiting responses.J. Neurophysiol. 25, 621–635.

    Google Scholar 

  • Reichenthal, E. and S. Hocherman. 1979. A critical epileptic area in the cat's cortex and its relation to the cortical columns.Electroenceph. clin. Neurophysiol.,47, 147–152.

    Article  Google Scholar 

  • Schallek, W. and A. Kuehn, 1963. Effects of trimethadione, diphenylhydantion and chlordiazepoxide on afterdischarge in brain of cat.Proc. Soc. exp. Biol. Med. 112, 813–817.

    Google Scholar 

  • Scheibel, A. B. 1984. The brain stem reticular core and sensory function. InHandbook of Physiology, Section I: The Nervous System, Volume III. Sensory Processes, Part I, J. M. Brookhart, and V. B. Mountcastle (eds), pp. 213–256. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Scheibel, M. E., T. L. Davies and A. B. Scheibel. 1973. On thalamic substrates, of synchrony.Neurology 23, 300–304.

    Google Scholar 

  • Schwartzkroin, P. A. 1982. Development of rabbit hippocampus: physiology.Devl Brain Res. 2, 469–486.

    Article  Google Scholar 

  • Scobey, R. P. and A. J. Gabor. 1977. Properties of epileptogenic focus: activation field.J. Neurophysiol. 40, 1199–1213.

    Google Scholar 

  • Shouse, M. N. 1987. Different thalamocortical excitability patterns underlying state dependent seizures in feline models of petit mal and temporal lobe epilepsy.Soc. Neurosci. Abstr. 13, 365.

    Google Scholar 

  • Skondras, M. 1988. RF-cell: a model for populations of randomly interconnected neurons.Bull. math. Biol. 50, 43–66.

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, R. B. 1976. A theoretical analysis of neuronal variability.Biophys. J. 5, 173–194.

    Google Scholar 

  • Steriade, M. and M. Deschênes. 1984. The thalamus as a neuronal oscillator.Brain Res. Rev. 8, 1–63.

    Article  Google Scholar 

  • Steriade, M. and R. R. Llinás. 1988. The functional states of the thalamus and the associated neuronal interplay.Physiol. Rev. 68, 649–742.

    Google Scholar 

  • Steriade, M., A. Parent, J. Hada. 1984. Thalamic projections of nucleus reticularis thalami of cat: a study using retrograde transport of horseradish peroxidase and fluorescent tracers.J. Comp. Neurol. 229, 531–547.

    Article  Google Scholar 

  • Steriade, M. and G. Yossif. 1974. Spike-and-wave afterdischarges in cortical somatosensory neurons of cat.Electroenceph. clin. Neurophysiol. 37, 633–648.

    Article  Google Scholar 

  • Toman, J. E. P., E. A. Swinyard and L. S. Goodman. 1946. Properties of maximal seizures, and their alteration by anticonvulsant drugs and other agents.J. Neurophysiol. 9, 231–239.

    Google Scholar 

  • Traub, R. D. and R. K. S. Wong. 1983. Synchronized burst discharge in disinhibited hippocampus. II: model of cellular mechanisms.J. Neurophysiol. 49, 459–471.

    Google Scholar 

  • Verzeano, M. and K. Negishi. 1960. Neuronal activity in cortical and thalamic networks: a study with multiple microelectrodes.J. Gen. Physiol. 43, 177–195.

    Article  Google Scholar 

  • Williams, D. 1953. A study of thalamic and cortical rhythms in petit mal.Brain 76, 50–69.

    Google Scholar 

  • Williams, D. 1965. The thalamus and epilepsy.Brain 88, 539–556.

    Google Scholar 

  • Wilson, H. R. and J. D. Cowan. 1972. Excitatory and inhibitory interactions in localized populations of model neurons.Biophys. J. 12, 1–23.

    Article  Google Scholar 

  • Wilson, H. R. and J. D. Cowan. 1973. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Kybernetik 13, 55–80.

    Article  MATH  Google Scholar 

  • Wong, R. and E. Harth. 1973. Stationary states and transients in neural populations.J. theor. Biol. 40, 77–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowack, W.J., Theodoridis, G.C. The thalamocortical contribution to epilepsy. Bltn Mathcal Biology 53, 505–523 (1991). https://doi.org/10.1007/BF02458626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458626

Keywords

Navigation