Skip to main content
Log in

The cellular computer DNA: Program or data

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The classical metaphor of the genetic program written in the DNA nucleotidic sequences is reconsidered. Recent works on algorithmic complexity and logical properties of computer programs and data are used to question the explanatory value of that metaphor. Structural properties of strings are looked for which would be necessary to apply to DNA sequences if the metaphor is to be taken literally. The notion of sophistication is used to quantify meaningful complexity and to distinguish it from classical computational complexity. In this context, the distinction between program and data becomes relevant and an alternative metaphor of DNA as data to a parallel computing network embedded in the global geometrical and biochemical structure of the cell is discussed. An intermediate picture of an evolving network emerges as the most likely where the output of the cellular computing network can produce, at a different time scale, changes in the structure of the network itself by means of changes in the DNA activity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Agur, Z. and M. Kerzberg. 1987. The emergence of phenotypic novelties through progressive genetic change.Am. Natur. 129, 862–875.

    Article  Google Scholar 

  • Atlan, H. 1987. Self-creation of meaning.Physica Scripta 36, 563–576.

    Google Scholar 

  • Atlan, H., E. Ben-Ezra, F. Fogelman-Soulie, D. Pellegrin and G. Weisbuch. 1986. Emergence of classification procedures in automata networks as a model for functional self-organization.J. theor. Biol. 120, 371–380.

    Article  MathSciNet  Google Scholar 

  • Bennett, C. 1989. On the logical “depth” of sequences and their reducibilities to incompressible sequences, in press.

  • Blattner, F. R. 1983. Biological frontiers.Science 222, 4625, 719–720.

    Google Scholar 

  • Campos-Ortega, J. A. 1985. Genetics of early neurogenesis inDrosophila Melanogaster.Trends Neurosci. 8, 245–250.

    Article  Google Scholar 

  • Chaitin, G. J. 1975. A theory of program size formally identical to information theory.JACM 22, 329–340.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaitin, G. J. 1979. Towards a mathematical definition of life. InThe Maximum Entropy Formalism, R. Levine and M. Tribus (Eds), pp. 479–500. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cover, T. 1985. Kolmogoroff complexity, data compressing and inference. InThe Impact of Processing Techniques on Communications, Skwyrzynski (Ed.). The Hague. Martinus Nijhoff.

    Google Scholar 

  • deDuve, C. 1988. The second genetic code.Nature 333, 117.

    Article  Google Scholar 

  • Gehring, W. J. 1985. The molecular basis of development.Scient. Am. 140, 153–162.

    Google Scholar 

  • Goodwin, B. C. 1985. What are the causes of morphogenesis?Bio Essays 3, 32–36.

    Google Scholar 

  • Goodwin, B. C. 1988. Morphogenesis and heredity. InEvolutionary Processes and Metaphors, M.-W. Ho and S. W. Fox (Eds), pp. 145–162. New York: Wiley.

    Google Scholar 

  • Holliday, R. 1987. The inheritance of epigenetic defects.Science 238, 163–170.

    Google Scholar 

  • Hou, Y. M. and P. Schimmel. 1988. A simple structural feature is a major determinant of the identity of a transfer-RNA.Nature 333, 140.

    Article  Google Scholar 

  • Jacob, F. 1970.La Logique de Vivant. Paris: Gallimard.

    Google Scholar 

  • Kaufman, S. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets.J. theor. Biol. 22, 427–467.

    MathSciNet  Google Scholar 

  • Kolmogoroff, A. N. 1965. Three approaches to the quantitative definition of information.Prob. Inform. Transmission 1, 1–7.

    Google Scholar 

  • Koppel, M. 1987. Structure. InThe Universal Turing Machine: A Half-Century Survey, R. Herken (Ed.), pp. 435–452. Oxford University Press.

  • Koppel, M. and H. Atlan. 1989. Program-length complexity, sophistication and induction.Inform. Sci., in press.

  • Lwoff, A. 1962.Biological Order. Cambridge, MA: MIT Press.

    Google Scholar 

  • Milgram, M. and H. Atlan. 1983. Probabilistic automata as a model for epigenesis of cellular networks.J. theor. Biol. 103, 523–547.

    Article  MathSciNet  Google Scholar 

  • National Research Council Report. 1988.Mapping and Sequencing the Human Genome. Washington, DC: National Academy Press.

    Google Scholar 

  • Philipson, L. and J. Tooze. 1987. The human genome project.Biofutur 58, 94–101.

    Google Scholar 

  • Pittendrigh, C. S. 1858. Adaptation, natural selection and behavior. InBehavior and Evolution. A. Roe and G. G. Simpson (Eds), pp. 390–416. Yale University Press.

  • Rumelhart, D. E., J. L. McClelland (PDP Research Group). 1986.Parallel Distributed Processing, Vol. 1. Cambridge, MA: MIT Press.

    Google Scholar 

  • Shannon, C. 1948. A mathematical theory of communication.Bell. Systems J. 27, 379–423; 623–656.

    MathSciNet  Google Scholar 

  • Subtelny, S. and I. R. Konigsberg. 1979.Determinants of Spatial Organization. New York: Academic Press.

    Google Scholar 

  • Thomas, R. 1973. Boolean formalization of genetic control circuits.J. theor. Biol. 42, 563–585.

    Article  Google Scholar 

  • Turing, A. M. 1936. On computable numbers, with an application for the Entscheidungsproblem.Proc. Lond. math. Soc. 42, 230–265.

    MATH  Google Scholar 

  • Wada, A. 1987. Automated high-speed DNA sequencing.Nature 325, 771–772.

    Article  Google Scholar 

  • Weisbuch, G. 1985. Modelling natural systems with networks of automata: the search for generic behaviors. InDynamical Systems and Cellular Automata, J. Demongeot, E. Goles and M. Tchuente (Eds), pp. 293–304. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlan, H., Koppel, M. The cellular computer DNA: Program or data. Bltn Mathcal Biology 52, 335–348 (1990). https://doi.org/10.1007/BF02458575

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458575

Keywords

Navigation