Skip to main content
Log in

A search for maximum species abundances in ecological communities under conditional diversity optimization

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a multispecies community of autotrophic microorganisms which grow in a batch culture regime with several perfectly complementary resources. A basic hypothesis is that a stationary phase of the polyculture corresponds to a maximum diversity under the constraints having the meaning of matter conservation laws. The corresponding conditional extremum problem is studied in detail. It is shown that a unique solution to this problem—a “species structure formula”—adequately describes the experimental data. We prove a number of strict statements concerning the domain of definition and maxima of the obtained solutions. These statements find an adequate interpretation as limitation principles in ecology and in the problems of community structure control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R. A. and R. McGehee. 1980. Competitive exclusion.American Naturalist 115, 151–170.

    Article  MathSciNet  Google Scholar 

  • Ballyk, M. M. and G. S. K. Wolkowicz. 1995. An examination of the thresholds of enrichment: a resource-based growth model.J. Math. Biol. 33, 435–457.

    Article  MATH  MathSciNet  Google Scholar 

  • Blomqvist, P., H. Olsson, H. Olofsson and O. Broberg 1989. Enclosure experiments with low-dose additions of phosporus and nitrogen in the acidified lake Njupfatet, Central Sweden.Int. Rev. Gesamt. Hydrobiol. 74, 611–631.

    Google Scholar 

  • Brillouin, L. 1963.Science and Information Theory. New York: Academic Press.

    Google Scholar 

  • Bulgakov, N. G. and A. P. Levich. 1995. Biogenic elements in the environment and phytoplankton: ratio N:P as an independent factor to regulate the algocoenosis structure.Uspekhi Sovremennoy Biologii 115, 13–23 (in Russian).

    Google Scholar 

  • Butler, G. I. and G. S. K. Wolkowicz. 1987. Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources.Math. Biosci. 83, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Degermedzhy, A. G., V. A. Adamovich and V. N. Pozdyayev. 1989. On the cybernetics of bacterial communities: observations, experiments, and theory.Cybernetics and Systems 20, 501–541.

    MathSciNet  Google Scholar 

  • Droop, M. R. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition inMonochrysis lutheri J. Mar. Biol. Assoc. U.K. 48, 689–733.

    Article  Google Scholar 

  • Droop, M. R. 1973. Some thoughts on nutrient limitation in algae.J. Phycol. 9, 264–272.

    Article  Google Scholar 

  • Droop, M. R. 1983. 25 years of algae growth kinetics: a personal view.Bot. Mar. 26, 99–112.

    Article  Google Scholar 

  • Fedorov, V. D., E. N. Kondrik and A. P. Levich. 1977. A rank distribution of White Sea phytoplankton abundance.Doklady AN SSSR 236, 264–267. (in Russian).

    Google Scholar 

  • Fredrickson, A. G. and G. Stephanopoulos. 1981. Microbial competition.Science 213, 972–979.

    MathSciNet  Google Scholar 

  • Gibbs, J. W. 1902.Elementary Principles in Statistical Mechanics. New York: Longmans, Green & Co.

    MATH  Google Scholar 

  • Haken, H. 1988.Information and Self-Organization: A Macroscopic Approach to Complex Systems. Berlin: Springer.

    MATH  Google Scholar 

  • Intriligator, M. 1971.Mathematical Optimization and Economic Theory. New York: Prentice-Hall.

    Google Scholar 

  • Jøgensen, S. E. 1980.Lake Management. Oxford: Pergamon Press.

    Google Scholar 

  • Karpouzas, I. 1986. Respiratory parameters. Minimization of the energy cost of breathing.Math. Biosci. 78, 1–20.

    Article  MATH  Google Scholar 

  • Ketchum, B. H. 1939. The absortion of phosphate and nitrate by illuminated cultures ofNitzschia closterium Am. J. Bot. 26, 399–407.

    Article  Google Scholar 

  • Kilham, S. S. 1986. Dynamic of Lake Michigan natural phytoplankton communities in continuous cultures along a Si: P loading gradient.Can. J. Fish. and Aquat. Sci. 43, 351–360.

    Article  Google Scholar 

  • Klapwijk, S. P. 1990. Comparison of historical and recent data on hydrochemistry and phytoplankton in the Rijnland area (The Netherlands).Hydrobiologia 199, 87–100.

    Article  Google Scholar 

  • Kuenzler, E. J. and B. H. Ketchum. 1962. Rate of phosphorus uptake byPhaedactylum tricornutum.Biol. Bull. Marine Biol. Lab., Woods Hall 123, 134–145.

    Google Scholar 

  • Leon, J. A. and D. B. Tumpson. 1975. Competition between two species for two complementary or substitutable resources.J. Theor. Biol. 50, 185–201.

    Article  Google Scholar 

  • Levich, A. P. 1980.Structure of Ecological Communities. Moscow: Moscow University Press (in Russian).

    Google Scholar 

  • Levich, A. P. 1982.Sets Theory, the Language of Category Theory and Their Applications in Theoretical Biology. Moscow: Moscow University Press (in Russian).

    Google Scholar 

  • Levich, A. P., N. V. Revkova and N. G. Bulgakov. 1986a. “The “consumption-growth” process in microalgal cultures and cells' demands for mineral nutrition components. InEcological Forecast, V. N. Maximov (Ed), pp. 132–139. Moscow: Moscow University Press (in Russian).

    Google Scholar 

  • Levich, A. P., E. G. Liubimova and G. Sh. Martashvili. 1986b. Species structure and consumption of substrate-energy factors in laboratory algocoenoses. InEcological Forecast, V. N. Maximov (Ed), pp. 69–103. Moscow: Moscow University Press (in Russian).

    Google Scholar 

  • Levich, A. P. and V. I. Artyukhova. 1991. Measuring requirements of phytoplankton for environmental substrate factors.Biol. Bull. of the Academy of Sciences of the USSR 18, 86–93.

    Google Scholar 

  • Levich, A. P. and N. G. Bulgakov. 1992. Regulation of species and size composition in phytoplankton communitiesin situ by N:P ratio.Russian J. Aquatic Ecology 2, 149–159.

    Google Scholar 

  • Levich, A. P. and E. G. Lichman. 1992. Model studies of an opportunity of directed structure change of a phytoplankton community.Zhurnal Obshchey Biologii 53, 689–703 (in Russian).

    Google Scholar 

  • Levich, A. P., A. A. Khudoyan, N. G. Bulgakov and V. I. Artyukhova. 1992. On a possibility to control the species and size structure of a community in experiments with natural phytoplanktonin vitro.Biologicheskiye Nauki 7, 17–31 (in Russian).

    Google Scholar 

  • Levich, A. P. and N. G. Bulgakov. 1993. Possibility of controlling the algal community structure in the laboratory.Biol. Bulletin of the Russian Acad. Sciences 20, 457–464.

    Google Scholar 

  • Levich, A. P., V. L. Alexeyev and S. Yu. Rybakova. 1993a. Optimization of the structure of ecological communities: model analysis.Biophysics 38, 903–911.

    Google Scholar 

  • Levich, A. P., D. G. Zamolodchikov and V. L. Alexeyev. 1993b. Limiting link rule for multispecies community consuming essential resources.Zh. Obshch. Biol. 54, 271–286 (in Russian).

    Google Scholar 

  • Levich, A. P., V. L. Alexeyev and V. A. Nikulin. 1994. Mathematical aspects of variation modelling in ecology of communities.Matematicheskoe modelirovanie 6, 55–76 (in Russian).

    MATH  MathSciNet  Google Scholar 

  • Levich, A.P. 1995. Time as variability of natural systems: ways of quantitative description of changes and creations of changes by substantial flows. InOn the Way to Understanding the Time Phenomenon: The Constructions of Time in Natural Sciences, Part 1, A. P. Levich (Ed), pp. 149–199. Singapore: World Scientific.

    Google Scholar 

  • Levine, R. D. and M. Tribus (Eds). 1979.The Maximum Entropy Formalism. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Lewis III, H. W., N. G. Goel and R. L. Thompson. 1988. Simulation of cellular compaction and internalization in mammalian embryo development—II. Models for spherical embryos.Bull. Math. Biol. 50, 121–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Liebig, J. 1840.Chemistry in Its Application to Agriculture and Physiology. London: Taylor & Walton.

    Google Scholar 

  • Luenberger, D. G. 1984.Linear and Nonlinear Programming, 2nd ed. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Ludwig, J. A. and J. F. Reynolds. 1988.Statistical Ecology: A Primer on Methods and Computing. New York: Wiley.

    Google Scholar 

  • Lurie, D., J. Valls and J. Wagensberg. 1983. Thermodynamic approach to biomass distribution in ecological systems.Bull. Math. Biol. 45, 869–872.

    Article  Google Scholar 

  • MacArthur, R. H. 1955. Fluctuations of animal populations and measure of community stability.Ecology 36, 533–536.

    Article  Google Scholar 

  • Margalef, R. 1951. A practical proposal to stability.Publ. De Inst. De Biol. Appl. Univ. De Barcelona 6, 5–19.

    Google Scholar 

  • Menhinick, E. F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects.Ecology 48, 392–404.

    Google Scholar 

  • Mitscherlich, E. A. 1925.Die Bestimmung des Dungerbedurfuisses der Bodens. Berlin: 2 Aufl. Darly.

  • Motomura, I. 1932. A statistical treatment of associations.Japan. J. Zool. 44, 379–383 (in Japanese).

    Google Scholar 

  • Odum, E. P. 1983.Basic Ecology, Vol. 2. Philadelphia: Saunders College Publ.

    Google Scholar 

  • Odum, H. T., J. E. Cantlon and L. S. Kornicker. 1960. An organizational hierarchy postulate for the interpretation of species-individuals distributions, species entropy and ecosystem evolution and the meaning of a species variety index.Ecology 41, 395–399.

    Article  Google Scholar 

  • Prits, A. K. 1974.Principle of Stationary State of Open System and Population Dynamic. Kaliningrad: Kaliningrad University Press (in Russian).

    Google Scholar 

  • Rhee, G.-Yu. 1982. Effects of environmental factors and their interactions on phytoplankton growth.Adv. Microb. Ecol. 6, 33–74.

    Google Scholar 

  • Rhee, G.-Yu. and I. J. Gotham. 1980. Optimum N:P ratios and coexistence of planktonic algae.J. Phycol. 16, 486–489.

    Article  Google Scholar 

  • Rosen, R. 1986. Optimality in biology and medicine.J. Math. Analysis and Appl. 119, 203–222.

    Article  MATH  Google Scholar 

  • Schuster, S. and R. Heinrich. 1991. Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. I. Theoretical analysis.J. Math. Biol. 29, 425–442.

    Article  MATH  Google Scholar 

  • Tilman, D. 1982.Resource Competition and Community Structure. New Jersey: Princeton University Press.

    Google Scholar 

  • Vavilin, V. A., V. B. Vasiliev and S. V. Rytov. 1993.Modelling of Organic Matter Destruction by Microorganisms Community. Moscow: Nauka (in Russian).

    Google Scholar 

  • Waltman, P., S. P. Hubbel and S. B. Hsu. 1980. Theoretical and experimental investigation of microbial competition in continuous culture. InModelling and Differential Equations, T. Burton (Ed), New York: Marcel Dekker.

    Google Scholar 

  • Wilhelm, T., E. Hoffmann-Klipp and R. Heinrich. 1994. An evolutionary approach to enzyme kinetics: optimisation of ordered mechanisms.Bull. Math. Biol. 56, 65–106.

    Article  MATH  Google Scholar 

  • Woodwell, G. M. and H. H. Smith (Eds). 1969.Diversity and Stability in Ecological Systems. Brookhaven Symp. Biol., Vol. 22.

  • Zamolodchikov, D. G. and A. P. Levich. 1992. Selection of plankton alga species for complete utilization of polybiogenic load on a waterbody.Moscow University Biological Sciences Bulletin 47, 234–246.

    Google Scholar 

  • Zamolodchikov, D. G., A. P. Levich and S. Yu. Rybakova. 1993. A study of the adequacy of a category-theoretic model of phytoplankton communities.Ecological Monitoring Problems and Ecosystem Modelling 15, 234–246 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeyev, V.L., Levich, A.P. A search for maximum species abundances in ecological communities under conditional diversity optimization. Bltn Mathcal Biology 59, 649–677 (1997). https://doi.org/10.1007/BF02458424

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458424

Keywords

Navigation