Skip to main content
Log in

Inverse analysis of empirical matrices of idiotypic network interactions

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The concept of shape space proposed by Perelson and Oster (1979,J. Theor. Biol. 81, 645–670) has been a useful tool for theoretical immunologists, who have invoked it to model idiotypic binding, which plays a significant role in mathematical models of immune networks. The actual construction of such a space from its definition requires specialized experimental information, which is not completely available. In this article, we discuss, with illustrative examples, how graphical representations similar to the idea of shape space can be derived by analyzing real affinity matrices, and the relative merits of such representations to approximations that might be obtained by the approach of Perelson and Oster. We also give directions for future research with a view toward applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borg, I. and J. Lingoes. 1987.Multidimensional Similarity Structural Analysis. New York: Springer.

    Google Scholar 

  • B-Rao, C. and K. C. Majumdar, 1996. Map-like representation of phylogenetic relationships: application to tilapiine fish. Unpublished manuscript.

  • Carneiro, J. and J. Stewart. 1994. Rethinking “shape space”: evidence from simulated docking suggests that steric shape complementarity is not limiting for antibody-antigen recognition and idiotypic interactions.J. Theor. Biol. 169, 391–402.

    Article  Google Scholar 

  • De Boer, R., P. Hogeweg and A. Perelson. 1992a. Growth and recruitment in the immune network. InTheoretical and Experimental Insight into Immunology, A. S. Perelson and G. Weisbuch (Eds), NATO ASI Series, Vol. H66, pp. 223–247. Berlin: Springer.

    Google Scholar 

  • De Boer, R. J., L. A. Segel and A. S. Perelson.1992b. Pattern formation in one- and two-dimensional shape-space models of the immune system.J. Theor. Biol. 155, 295–333.

    Article  Google Scholar 

  • Grandien, A., Y. Modigliani, A. Freitas, J. Andersson and A. Coutinho. 1994. Positive and negative selection of antibody repertoires during B cell differentiation.Immunol. Rev. 137, 53–89.

    Article  Google Scholar 

  • Heiser, W. 1981. Unfolding analysis of proximity data. Doctoral thesis, Rijksuniversiteit, Leiden.

    Google Scholar 

  • Hsu, D.-H. 1988. Doctoral thesis, University of California, Los Angeles.

  • Kearney, J. F., M. Vakil and N. Nicholson. 1987. Non randomV H gene expression and idiotype-anti-idiotype expression on early B cells. InEvolution and Vertebrate Immunity: The Antigen Receptor and MHC Gene Families, G. Kelsoe and D. Schulze (Eds), pp. 175–190. Austin TX: Texas University Press.

    Google Scholar 

  • Meulman, J. 1986.A Distance Approach to Nonlinear Multivariate Analysis, Leiden: DSWO Press.

    Google Scholar 

  • Percus, J. 1988. Polydisperity in immune networks. InTheoretical Immunology, Part Two, A. S. Perelson (Ed.)SFI Studies in the Science of Complexity, Vol III, pp. 345–358. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Perelson, A. S. and G. Oster. 1979. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination.J. Theor. Biol. 81, 645–670.

    Article  MathSciNet  Google Scholar 

  • Roitt, I. M. 1991.Essential Immunology. Boston, MA: Blackwell.

    Google Scholar 

  • Seber, G. A. F. 1984.Multivariate Observations. New York: Wiley.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1988. Computations in shape space: a new approach to immune network theory. InTheoretical Immunology, Part Two, A. S. Perelson (Ed),SFI Studies in the Science of Complexity, Vol III, pp. 321–343. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Stewart, J. and F. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.

    Article  Google Scholar 

  • Stewart, J. and F. J. Varela, 1991. Morphogenesis in shape space: elementary metadynamics of immune networks.J. Theor. Biol. 153, 477–498.

    Google Scholar 

  • Sulzer, B., J. L. van Hemmen and U. Behn. 1994. Central immune system, the self and autoimmunity.Bull. Math. Biol. 56, 1009–1040.

    Article  MATH  Google Scholar 

  • Tarantola, A. 1987.Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier.

    Google Scholar 

  • Weinand, R. G. 1990. Somatic mutation, affinity maturation and the antibody repertoire: a computer model.J. Theor. Biol. 143, 343–382.

    Google Scholar 

  • Weinand, R. G. 1991. Somatic mutation and the antibody repertoire: a computational model of shape space. InMolecular Evolution on Rugged Landscapes, A. S. Perelson and S. A. Kauffman (Eds).SFI Studies in the Science of Complexity, Vol IX, pp. 215–236. Redwood City, CA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

B-Rao, C., Stewart, J. Inverse analysis of empirical matrices of idiotypic network interactions. Bltn Mathcal Biology 58, 1123–1153 (1996). https://doi.org/10.1007/BF02458386

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458386

Keywords

Navigation