Skip to main content
Log in

Parallel computation enables precise description of Ca2+ distribution in nerve terminals

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Parallel computation employing a domain decomposition method was used to calculate precisely without approximations the spatio-temporal distribution of Ca2+ in nerve terminals. The results showed, contrary to expectations, that for equal admitted Ca2+ currents at low (one channel open) and high (four channels open) depolarization, the average Ca2+ concentration at the release area is higher at the low depolarization. These calculations provide additional support for the Ca2+-voltage hypothesis for neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon, S. and M. Bercovier. 1993. Semi-automatic computer construction of three-dimensional shapes for the finite element method.Comput. Methods Programs Biomed. 41, 135–146.

    Article  Google Scholar 

  • Aharon, S., H. Parnas and I. Parnas. 1994. The magnitude and significance of Ca2+ domains for release of neurotransmitter,Bull. Math. Biol. 56, 1095–1119.

    Article  MATH  Google Scholar 

  • Akay, H. U. and A. Ecer. 1994. Efficiency considerations for explicit CFD solvers on parallel computers. InProceedings of the International Workshop on Solution Techniques for Large-Scale CFD Problems, W. G. Habashi (Ed). Centre de Recherche en Calcul Applique.

  • Atwood, H. L., J. K. Stevens and L. Marin. 1984. Axonal synapse location and consequences for presynaptic inhibition in crustacean motor axon terminals.J. Comp. Neurol. 225, 64–74.

    Article  Google Scholar 

  • Augustine, G. J., M. P. Charlton and S. J. Smith. 1985. Calcium entry and transmitter release at voltage-clamped nerve terminals of squid.J. Physiol. 369, 163–181.

    Google Scholar 

  • Augustine, G. J., M. P. Charlton and S. J. Smith. 1987. Calcium action in synaptic transmitter release.Ann. Rev. Neurosci. 10, 633–693.

    Article  Google Scholar 

  • Crank, J. 1975.The Mathematics of Diffusion, 2nd ed. Oxford: Clarendon Press.

    Google Scholar 

  • Datyner, N. B. and P. W. Gage. 1980. Phasic secretion of acetylcholine at a mammalian neuromuscular junction.J. Physiol. (Lond.) 303, 299–314.

    Google Scholar 

  • Dudel, J. 1984. Control of quantal transmitter release at frog's motor nerve terminal. [I] Dependence on amplitude and duration of depolarization.Pflügers Arch. 402, 225–234.

    Article  Google Scholar 

  • Engelman, M. 1993. FIDAP Theoretical Manual, version 7.0 FDI, 500 Davis Street, Suite 600, Evanston, IL 60201.

  • Fogelson, A. L. and R. S. Zucker. 1985. Presynaptic calcium diffusion from various arrays of single channels.Biophys. J. 48, 1003–1017.

    Google Scholar 

  • Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam 1994. PVM 3 User's Guide and Reference Manual. Oak Ridge National Laboratory, Oak Ridge, TN 37831.

    Google Scholar 

  • Haydon, P. G., E. Henderson and E. F. Stanley 1994. Localization of individual calcium channels at the release face of a presynaptic nerve terminal.Neuron 13, 1275–1280.

    Article  Google Scholar 

  • Kondratiev, V. 1968. Boundary value problems for elliptic equations in domains with conical or angular points.AMS 16, 227–313.

    Google Scholar 

  • Lions, P. L. 1988. On the Schwarz alternating method. I InFirst International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (Eds). Philadelphia: SIAM.

    Google Scholar 

  • Lions, P. L. 1989. On the Schwarz alternating method. II: stochastic interpretation and order properties. InDomain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux and O. Widlund (Eds). Philadelphia: SIAM.

    Google Scholar 

  • Llinas, R., I. Z. Steinberg and K. Walton. 1981. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse.Biophys. J. 33, 323–352.

    Google Scholar 

  • Löhner, R. and K. Morgan, 1988. Domain decomposition for the simulation of transient problems in CFD. InFirst International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (Eds.) Philadelphia: SIAM.

    Google Scholar 

  • Mascagni, M. 1991. A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models.J. Neurosci. Methods 36, 105–114.

    Article  Google Scholar 

  • Parnas, H., J. Dudel and I. Parnas. 1986. Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca2+ entry controls the time course of phasic release.Pflügers Arch. 406, 121–130.

    Article  Google Scholar 

  • Parnas, H., G. Hovav and I. Parnas. 1989. Effect of Ca2+ diffusion on the time course of neurotransmitter release.Biophys. J. 55, 859–874.

    Google Scholar 

  • Parnas, H. and I. Parnas 1994. Topical review: neurotransmitter release at fast synapses.J. Membrane Biol. 142, 267–279.

    Article  Google Scholar 

  • Parnas, H., I. Parnas and L. A. Segel. 1990. On the contribution of mathematical models to the understanding of neurotransmitter release.Int. Rev. Neurobiol. 32, 1–50.

    Google Scholar 

  • Parnas, I., H. Parnas and J. Dudel. 1986. Neurotransmitter release and its facilitation in crayfish. VIII. Modulation of release by hyperpolarizing pulses.Pflügers Arch. 406, 131–137.

    Article  Google Scholar 

  • Robitaille, R., E. M. Adler and M. P. Charlton. 1990. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses.Neuron 5, 773–779.

    Article  Google Scholar 

  • Silinsky, E. M., M. Watanabe, R. S. Redman, R. Qiu, J. K. Hirsh, J. M. Hunt, C. S. Solsona, S. Alford and R. C. MacDonald. 1995. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings.J. Physiol. 482, 511–520.

    Google Scholar 

  • Simon, S. M. and R. R. Llinas. 1985. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release.Biophys. J. 48, 485–498.

    Google Scholar 

  • Smith, S. J. and G. J. Augustine. 1988. Calcium ions, active zones and synaptic transmitter release.Trends in Neuroscience 11, 458–464.

    Article  Google Scholar 

  • Stockbridge, N. and J. W. Moore. 1984. Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction.J. Neurosci. 4, 803–811.

    Google Scholar 

  • Tsien, R. W., L. D. Ipsocmbe, D. V. Madison, K. R. Bley and A. P. Fox. 1988. Multiple types of neuronal calcium channels and their selective modulation.Trends in Neuroscience 11, 431–438.

    Article  Google Scholar 

  • Winslow, J. L., S. N. Duffy and M. P. Charlton. 1994. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses.J. Neurophysiol. 72, 1769–1793.

    Google Scholar 

  • Wojtowicz, J. M., I. Parnas, H. Parnas and H. L. Atwood. 1987. Latency of transmitter release at a crayfish motor nerve ending examined by intracellular depolarization.Can. J. Physiol. Pharmacol. 65, 105–108.

    Google Scholar 

  • Yamada, W. M. and R. S. Zucker. 1992. Time course of transmitter release calculated from simulations of a calcium diffusion model.Biophys. J. 61, 671–682.

    Article  Google Scholar 

  • Zucker, R. S. and A. L. Fogelson. 1986. Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels.Proc. Natl. Acad. Sci. USA 83, 3032–3036.

    Article  Google Scholar 

  • Zucker, R. S. and N. Stockbridge. 1983. Presynaptic calcium diffusion and the time course of transmitter release and synaptic facilitation at the squid giant synapse.J. Neurosci. 3, 1263–1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aharon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharon, S., Bercovier, M. & Parnas, H. Parallel computation enables precise description of Ca2+ distribution in nerve terminals. Bltn Mathcal Biology 58, 1075–1097 (1996). https://doi.org/10.1007/BF02458384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458384

Keywords

Navigation