Skip to main content
Log in

Memory capacity in large idiotypic networks

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many models of immune networks have been proposed since the original work of Jerne [1974,Ann. Immun. (Inst. Pasteur) 125C, 373–389]. Recently, a limited class of models (Weisbuchet al., 1990,J. theor. Biol. 146, 483–499) have been shown to maintain immunological memory by idiotypic network interactions. We examine generalizations of these models when the networks are both large and highly connected to study their memory capacity, i.e. their ability to account for immunization to a large number of random antigens. Our calculations show that in these minimal models, random connectivities with continuously distributed affinities reduce the memory capacity to essentially nil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berek, C. and C. Milstein. 1987. Mutation drift and repertoire shift in the maturation of the immune response.Immun. Rev. 96, 23–41.

    Article  Google Scholar 

  • Burnet, F. M. 1959.The Clonal Selection Theory of Acquired Immunity. New York: Cambridge University Press.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and A. S. Perelson 1991. Size and connectivity as emergent properties of a developping immune network.J. theor. Biol. 149, 318–424.

    Google Scholar 

  • De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993a. Immune network behavior—I. From stationary states to limit cycle oscillations.Bull. math. Biol. 55, 745–780.

    Article  MATH  Google Scholar 

  • De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993b. Immune network behavior—II. From oscillations to chaos and stationary states.Bull. math. Biol. 55, 781–816.

    Article  MATH  Google Scholar 

  • Faro, J. and S. Velasco. 1993. Crosslinking of membrane-immunoglobulins and B cell activation: a simple model based on percolation theory.Proc. R. Soc. London B 254, 139–145.

    Google Scholar 

  • Freitas, A., B. Rocha and A. Coutinho. 1986.Immun. Rev. 91, 5–37.

    Article  Google Scholar 

  • Hoffmann, G. 1975. A theory of regulation and self non-self discrimination in an immune network.Eur. J. Immun. 5, 638–647.

    Google Scholar 

  • Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immun. (Inst. Pasteur) 125C, 373–389.

    Google Scholar 

  • Metha, M. L. 1967.Random Matrices and the Statistical Theory of Energy Levels. New York: Academic Press.

    Google Scholar 

  • Neumann, A. U. 1992. PhD thesis. Israel: Bar-Ilam University, Ramat-Gam.

  • Neumann, A. U. and G. Weisbuch. 1992. Dynamics and topology of immune networks.Bull. math. Biol. 54, 699–726.

    Article  MATH  Google Scholar 

  • Parisi, G. 1990. A simple model for the immune network.Proc. natn. Acad. Sci. U.S.A. 87, 429–433.

    Article  Google Scholar 

  • Perelson, A. S. 1989a. Immune network theory.Immun. Rev.,110, 5–36.

    Article  Google Scholar 

  • Perelson, A. S. (Ed.) 1989 b.Theoretical Immunology. Santa Fe Institute Studies in the Sciences of Complexity: Addison-Wesley.

  • Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface, Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: a B-cell antibody model.J. statics. Phys. 63, 1113–1131.

    Article  Google Scholar 

  • Richter, P. 1975. A network theory of the immune system.Eur. J. Immun. 5, 350–354.

    Google Scholar 

  • Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115.

    MathSciNet  Google Scholar 

  • Vakil, M. and J. Kearney. 1986. Functional characterization of monoclonal auto-anti-idiotype antibodies isolated from the early B cell repertoire of BALB/c mice.Eur. J. Immun. 16, 1151–1158.

    Google Scholar 

  • Varela, F. and J. Stewart 1990. Dynamics of a class of immune networks I. Global stability of idiotype interactions.J. theor. Biol. 144, 93–101.

    MathSciNet  Google Scholar 

  • Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499.

    Google Scholar 

  • Weisbuch, G. 1990. A shape space approach to the dynamics of the immune system.J. theor. Biol. 143, 507–522.

    MathSciNet  Google Scholar 

  • Weisbuch, G. and A. U. Neumann. 1991. Generic modeling of the immune network. InTheoretical and Experimental Insights into Immunology, A. S. Perelson and G. Weisbuch (Eds), p. 205. NATO ASI Series.

  • Weisbuch, G. and M. Oprea, 1994. Capacity of a model immune network.Bull. math. Biol. 56, 899–921.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutet de Monvel, J.H., Martin, O.C. Memory capacity in large idiotypic networks. Bltn Mathcal Biology 57, 109–136 (1995). https://doi.org/10.1007/BF02458319

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458319

Keywords

Navigation