Skip to main content
Log in

Dynamics of small autocatalytic reaction networks—II. Replication, mutation and catalysis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mutation is introduced into autocatalytic reaction networks. The differential equations obtained are neither of repliator-type nor can they be transformed straightway into a linear equation. Examples of low dimensional dynamical systems —n=2, 3 and 4 — are discussed and complete qualitative analysis is presented. Error thresholds known from simple replication-mutation kinetics with frequency independent replication rates occur here as well. Instead of cooperative transitions or higher order phase transitions the thresholds appear here as supercritical or subcritical bifurcations being analogous to first-order phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andrade, M. A., J. C. Nuño, F. Morán, F. Montero and G. Mptisos. 1993. Complex dynamics of a catalytic network having faulty replication into error-species.Physica D 63, 21–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Cech, T. R. 1986. RNA as an enzyme.Sci. Am. 255 (5), 76–84.

    Article  Google Scholar 

  • Doudna, J. A. and J. W. Szostak. 1989. RNA-catalyzed synthesis of complementary-strand RNA.Nature 339, 519–522.

    Article  Google Scholar 

  • Eigen, M. 1971. Selforganization of matter and the evolution of biological macromolecules.Die Naturwissenschaften 58, 465–523.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1977. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle.Die Naturwissenschaften 64, 541–565.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1978. The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle.Die Naturwissenschaften 65, 7–41.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1979.The Hypercycle. A Principle of Natural Self-organization. Berlin: Springer-Verlag.

    Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster. 1988. The molecular quasi-species.J. Phys. Chem. 92, 6881–6891.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster. 1989. The molecular quasi-species.Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M., C. K. Biebricher, M. Gebinoga and W. C. Gardiner. 1991. The hypercycle. Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage.Biochemistry,30, 11,005–11,018.

    Article  Google Scholar 

  • Hadeler, P. K. 1981. Stable polymorphisms in a selection model with mutation.SIAM J. Appl. Math. 41, 1–7.

    Article  MathSciNet  Google Scholar 

  • Hamming, R. W. 1950. Error detecting and error correcting codes.Bell Syst. Tech. J. 29, 147–160.

    MathSciNet  Google Scholar 

  • Hofbauer, J. 1981. On the occurrence of limit cycles in the Volterra-Lotka equation.Nonlinear Analysis 5, 1003–1007.

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. 1985. The selection mutation equation.J. Math. Biol. 23, 41–53.

    MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund. 1988.The Theory of Evolution and Dynamical Systems. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hofbauer, J., J. Mallet-Paret and H. L. Smith. 1991. Stable periodic solutions for the hypercycle system.J. Dynam. Diff. Eqns. 3, 423–236.

    Article  MATH  MathSciNet  Google Scholar 

  • Leuthäusser, I. 1987. Statistical mechanics of Eigen's evolution model.J. Statist. Phys.,48, 343–360.

    Article  MathSciNet  Google Scholar 

  • Nowak, M. and P. Schuster. 1989. Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller's ratchet.J. theor. Biol. 137, 375–395.

    Google Scholar 

  • Nuño, J. C., M. A. Andrade, F. Morán and F. Montero. 1993a. A model of an autocatalytic network formed by error-prone self-replicative species.Bull. Math. Biol. 55, 385–415.

    Article  MATH  Google Scholar 

  • Nuño, J. C., M. A. Andrade and F. Montero. 1993b. Non-uniformities and superimposed competition in a model of an autocatalytic network formed by error-prone self-replicative species.Bull. Math. Biol. 55, 417–449.

    Article  MATH  Google Scholar 

  • Rumschitzky, D. 1987. Spectral properties of Eigen evolution matrices.J. Math. Biol. 24, 667–680.

    MathSciNet  Google Scholar 

  • Schlögl, F. 1972. Chemical reaction models for non-equilibrium phase transitions.Z.f. Physik 253, 147–161.

    Article  Google Scholar 

  • Schnabl, W., P. F. Stadler, C. Forst and P. Schuster. 1991. Full characterization of a strange attractor. Chaotic dynamics in low-dimensional replicator systems.Physica D 48, 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Schuster, P. 1986. Dynamics of molecular evolution.Physica D 22, 100–119.

    Article  MathSciNet  Google Scholar 

  • Schuster, P., K. Sigmund and R. Wolff. 1978. Dynamical systems under constant organization I. Topological analysis of a family of non-linear differential equations—a model for catalytic hypercycles.Bull. Math. Biol. 40, 743–769.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. and K. Sigmund 1983. Replicator dynamics.J. theor. Biol. 100, 533–538.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. and K. Sigmund. 1985. Dynamics of evolutionary optimization.Ber. Bunsenges. Phys. Chem. 89, 668–682.

    Google Scholar 

  • Schuster, P. 1986. Dynamics of molecular evolution.Physica D 22, 100–119.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. and J. Swetina. 1988. Stationary mutant distribution and evolutionary optimization.Bull. Math. Biol. 50, 635–660.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. 1991. Complementary replication.Math. Biosc. 107, 83–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. and P. Schuster. 1992. Mutation in autocatalytic reaction networks. An analysis based on perturbation theory.J. Math. Biol. 30, 597–632.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. and J. C. Nuño. 1994. The influence of mutation on autocatalytic reaction networks.Math. Biosc. (in press).

  • Swetina, J. and P. Schuster. 1982. Self-replication with errors. A model for polynucleotide replication.Biophys. Chem. 16, 329–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, P.F., Schnabl, W., Forst, C.V. et al. Dynamics of small autocatalytic reaction networks—II. Replication, mutation and catalysis. Bltn Mathcal Biology 57, 21–61 (1995). https://doi.org/10.1007/BF02458315

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458315

Keywords

Navigation