Skip to main content
Log in

A new bell-shaped function for idiotypic interactions based on cross-linking

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Most recent models of the immune network are based upon a phenomenological log bell-shaped interaction function. This function depends on a single parameter, the “field”, which is the sum of all ligand concentrations weighted by their respective affinities. The typical behavior of these models is dominated by percolation, a phenomenon in which a local stimulus spreads globally throughout the network.

The usual reason for employing a log bell-shaped interaction function is that B cells are activated by cross-linking of their surface immunoglobulin receptors. Here we formally derive a new phenomenological log bell-shaped function from the chemistry of receptor cross-linking by bivalent ligand. Specifying how this new function depends on the ligand concentrations requires two fields: a binding field and a cross-linking field.

When we compare the activation functions for ligand-receptor pairs with different affinities, the one-field and the two-field functions differ markedly. In the case of the one-field activation function, its graph is shifted to increasingly higher concentration as the affinity decreases but keeps its width and height. In the case of the two-field activation function, the graph of a low-affinity interaction is nested within the graphs of all higher-affinity interactions.

We show that this difference in the relations among activation functions for different affinities radically changes the network behavior. In models that described B cell proliferation using the one-field activation function, network behavior was dominated by low-affinity interactions. Conversely, in our new model, the high-affinity interactions are the most significant. As a consequence, percolation is no longer the only typical network behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. W., A. Neumann and A. S. Perelson. 1993. A Cayley tree immune network model with antibody dynamics.Bull Math. Biol. 55 1091–1131.

    Article  MATH  Google Scholar 

  • Boutet de Monvel, J. H. and O. C. Martin. 1995. Memory capacity in large idiotypic networks.Bull. Math. Biol. 57, 109–136.

    Article  MATH  Google Scholar 

  • De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability, and suppression. InTheoretical Immunology, Part Two. SFI Studies in the Science of Complexity. A. S. Perelson (Ed), Vol. 3, pp. 265–289. Reading, MA: Addison-Wesley.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. Math. Biol. 51, 223–246.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. Math. Biol. 51, 381–408.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and A. S. Perelson. 1991. Size and connectivity as emergent properties of a developing immune network.J. Theor. Biol. 149, 381–424.

    Google Scholar 

  • De Boer, R. J., L. A. Segel and A. S. Perelson. 1992a. Pattern formation in one and two dimensional shape space models of the immune system.J. Theor. Biol. 155, 295–333.

    Article  Google Scholar 

  • De Boer, R. J., J. D. van der Laan and P. Hogeweg. 1992b. Randomness and pattern scale in the immune network. InThinking about Biology. SFI Lectures in Complex Systems, W. D. Stein and F. J. Varela (Eds), pp. 231–252. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993a. Immune network behavior I: From stationary states to limit cycle oscillations.Bull. Math. Biol. 55, 745–780.

    Article  MATH  Google Scholar 

  • De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993b. Immune network behavior II: From oscillations to chaos and stationary states.Bull. Math. Biol. 55, 781–816.

    Article  MATH  Google Scholar 

  • De Boer, R. J., A. U. Neumann, A. S. Perelson, L. A. Segel and G. W. Weisbuch. 1993c. Recent approaches to immune networks. InMathematics Applied to Biology and Medicine. J. Demongeot and V. Capasso (Eds), pp. 243–261, Winnipeg, Canada: Wuerz Publishing.

    Google Scholar 

  • DeLisi, C. and A. S. Perelson. 1976. The kinetics of aggregation phenomena. I. Minimal models for patch formation on lymphocyte membranes.J. Theor. Biol. 62, 159–210.

    Article  Google Scholar 

  • Detours, V., H. Bersini, J. Stewart and F. Varela. 1994. Development of an idiotypic network in shape space.J. Theor. Biol. 170, 401–414.

    Article  Google Scholar 

  • Dintzis, R. Z., M. H. Middleton and H. M. Dintzis. 1985. Inhibiton of anti-DNP antibody formation by high doses of DNP-polyacrylamide molecules; effects of hapten density and hapten valence.J. Immunol. 135 423–427.

    Google Scholar 

  • Erdös, P. and A. Rényi. 1960. On the random graphs. Publication 5, Mathematics Institute of the Hungarian Academy of Science.

  • Fanger, M. W., D. A. Hart, J. V. Wells and A. Nisonoff. 1970. Requirement for cross-linkage in the stimulation of transformation of rabbit peripheral lymphocytes by antiglobulin reagents.J. Immunol. 105, 1484–1492.

    Google Scholar 

  • Faro, J. and S. Velasco. 1993. Crosslinking of membrane immunoglobulins and B-cell activation: a simple model based on percolation theory.Proc. Roy. Soc. London Sec. B 254, 139–145.

    Google Scholar 

  • Faro, J. and S. Velasco. 1994. Numerical analysis of a model of ligand-induced B-cell antigen-receptor clustering. Implications for simple models of B-cell activation in an immune network.J. Theor. Biol. 167, 45–53.

    Article  Google Scholar 

  • Hoffmann, G. W. 1980. On network theory and H-2 restriction.Contemp. Topics Immunobiol. 11, 185–226.

    Google Scholar 

  • Jerne, N. K. 1974. Towards a network theory of the immune system.,Ann. Immunol. (Inst. Pasteur) 125C, 373–389.

    Google Scholar 

  • Klinman, N. R. 1972. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells.J. Exp. Med. 136, 241–260.

    Article  Google Scholar 

  • Levin, S. A. and L. A. Segel. 1985. Pattern formation in space and aspect.SIAM Rev. 27, 45–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Meinhardt, H. 1982.Models of Biological Pattern Formation. London: Academic Press.

    Google Scholar 

  • Mongini, P. K. A., C. A. Blessinger and J. P. Dalton. 1991. Affinity requirements for induction of sequential phases of human B cell activation by membrane IgM-cross-linking ligands.J. Immunol. 146, 1791–1800.

    Google Scholar 

  • Monroe, J. G. and J. Cambier. 1983. B cell activation. II. Receptor cross-linking by thymus-independent and thymus-dependent antigens induces a rapid decrease in the plasma membrane potential of antigen-binding B lymphocytes.J. Immunol. 131, 2641–2644.

    Google Scholar 

  • Neumann, A. U. and G. Weisbuch. 1992a. Window automata analysis of population dynamics in the immune system.Bull. Math. Biol. 54, 21–44.

    Article  MATH  Google Scholar 

  • Neumann, A. U. and G. Weisbuch. 1992b. Dynamics and topology of idiotypic networks.Bull. Math. Biol. 54, 699–726.

    Article  MATH  Google Scholar 

  • Perelson, A. S. 1981. Receptor clustering on a cell surface. III. Theory of receptor cross-linking by multivalent ligands: Description by ligand states.Math. Biosci. 53, 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. 1984. Some mathematical models of receptor clustering by multivalent ligands. InCell Surface Dynamics: Concepts and Models. A. S. Perelson, C. DeLisi and F. M. Wiegel (Eds), pp. 223–276. New York: Marcel Dekker.

    Google Scholar 

  • Perelson, A. S. 1989. Immune network theory.Immunol. Rev. 110, 5–36.

    Article  Google Scholar 

  • Perelson, A. S. and G. F. Oster. 1979. Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination.J. Theor. Biol. 81, 645–670.

    Article  MathSciNet  Google Scholar 

  • Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Riley, R. L. and N. R. Klinman. 1986. The affinity threshold for antigenic triggering differs for tolerance susceptible immature precursors vs mature primary B cells.J. Immunol. 136, 3147–3154.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1988. Computations in shape space: a new approach to immune network theory. InTheoretical Immunology, Part Two. SFI Studies in the Science of Complexity, A. S. Perelson (Ed), Vol. 3, pp. 321–343. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1989. Shape space analysis of immune networks. InCell to Cell Signalling: From Experiments to Theoretical Models. A. Goldbeter (Ed), pp. 273–283. New York: Academic Press.

    Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1990. A paradoxical instability caused by relatively short range inhibition.SIAM J. Appl. Math. 50, 91–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Shearer, W. T. and C. W. Parker. 1975. Humoral immunostimulation. III. Requirements for divalent antibody and cellular aggregation.J. Immunol. 115, 613–619.

    Google Scholar 

  • Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.

    Article  Google Scholar 

  • Stewart, J. and Varela, F. J. 1990. Dynamics of a class of immne networks: Oscillatory activity of cellular and humoral components.J. Theor. Biol. 144, 103–115.

    MathSciNet  Google Scholar 

  • Stewart, J. and F. J. Varela. 1991. Morphogenesis in shape-space. Elementary metadynamics in a model of the immune network.J. Theor. Biol. 153, 477–498.

    Google Scholar 

  • Sulzer, B., R. De Boer and A. S. Perelson. 1995. Crosslinking reconsidered: Binding and crosslinking fields and the cellular response. Unpublished.

  • Sulzer, B., J. L. Van Hemmen, A. U. Neumann and U. Behn. 1993. Memory in idiotypic networks due to competition between proliferation and differentiation.Bull. Math. Biol. 55, 1133–1182.

    Article  MATH  Google Scholar 

  • Teale, J. M. and N. R. Klinman. 1980. Tolerance as an active process.Nature 288, 385–387.

    Article  Google Scholar 

  • Turing, A. M. 1953. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. Ser. B 237, 37–72.

    Google Scholar 

  • Varela, F. J., A. Coutinho, B. Dupire and N. N. Vaz. 1988. Cognitive networks: immune, neural, and otherwise. InTheoretical Immunology, Part Two, SFI Studies in the Science of Complexity, A. S. Perelson (ed), Vol. 3, pp. 359–374. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Varela, F. J. and A. Coutinho. 1991. Second generation immune networks.Immunol. Today 12, 159–166.

    Google Scholar 

  • Weiner, H. L., J. W. Moorhead, K. Yamaga and R. T. Kubo. 1976. Anti-immunoglobulin stimulation of murine lymphocytes. II. Identification of cell surface target molecules and requirements for cross-linkage.J. Immunol. 117, 1527–1531.

    Google Scholar 

  • Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. Theor. Biol. 146, 483–499.

    Google Scholar 

  • Weisbuch, G. and A. S. Perelson. 1991. Affinity maturation and learning in immune networks. InEvolution on Rugged Landscapes: Proteins, RNA and the Immune System. SFI Studies in the Science of Complexity, A. S. Perelson and S. A. Kauffman (Eds), Vol. 9, pp. 189–205. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Wofsy, C. and B. Goldstein. 1990. Cross-linking ofFc γ receptors and surface antibodies.J. Immunol.,145, 1814–1825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, R.J., Boerlijst, M.C., Sulzer, B. et al. A new bell-shaped function for idiotypic interactions based on cross-linking. Bltn Mathcal Biology 58, 285–312 (1996). https://doi.org/10.1007/BF02458310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458310

Keywords

Navigation