Skip to main content
Log in

Idiotypic regulation of B cell differentiation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the equilibrium properties of idiotypically interacting B cell clones in the case where only the differentiation of B cells is affected by idiotypic interactions. Furthermore, we assume that clones may recognize and be stimulated by self antigen in the same fashion as by antiantibodies. For idiotypically interacting pairs of non-autoreactive clones we observe three qualitatively different dynamical regimes. In the first regime, at small antibody production an antibody-free fixed point, the virgin state, is the only attractor of the system. For intermediate antibody production, a symmetric activated state replaces the virgin state as the only attractor of the system. For large antibody production, finally, the symmetric activated state gives way to two asymmetric activated states where one clone suppresses the other clone. If one or both clones in the pair are autoreactive there is no virgin state. However, we still observe the switch from an almost symmetric activated state to two asymmetric activated states. The two asymmetric activated states at high antibody production have profoundly different implications for a self antigen which is recognized by one of the clones of the pair. In the attractor characterized by high autoantibody concentration the self antigen is attacked vigorously by the immune system while in the opposite steady state the tiny amount of autoantibody hardly affects the self antigen. Accordingly, we call the first state the autoimmune state and the second the tolerant state. In the tolerant state the autoreactive clone is down-regulated by its anti-idiotype providing an efficient mechanism to prevent an autoimmune reaction. However, the antibody production required to achieve this anti-idiotypic control of autoantibodies is rather large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bennett, M. R., W. G. Gibson and R. R. Poznanski. 1993. Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium.Phil. Trans. Roy. Soc. Lond. B342, 89–99.

    Article  Google Scholar 

  • Bennett, M. R., W. G. Gibson and J. Robinson. 1994. Dynamics of the CA3 pyramidal neuron autoassociative memory network of the hippocampus.Phil. Trans. Roy. Soc. Lond. B343, 167–187.

    Article  Google Scholar 

  • Berry, M. S. and V. W. Pentreath. 1977. The integrative properties of electrotonic synapses.Comp. Biochem. Physiol. 57A, 289–295.

    Article  Google Scholar 

  • Brown, T. H., R. A. Fricke and D. H. Perkel. 1981. Passive electrical constants in three classes of hippocampal neurons.J. Neurophysiol. 46, 812–827.

    Google Scholar 

  • Dudek, F. E. and R. D. Traub. 1989. Local synaptic and electrical interactions in hippocampus: experimental data and computer simulations. InNeural Models of Plasticity, J. H. Byrne and W. O. Berry, (Eds), pp. 378–402. San Diego: Academic Press.

    Chapter  Google Scholar 

  • Dudek, F. E., R. D. Andrew, B. A. MacVicar, R. W. Snow and C. P. Taylor. 1983. Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain. InBasic Mechanisms of Neuronal Hyperexcitability, H. H. Jasper and N. M. van Gelder (Eds), pp. 31–73. Liss: New York.

    Google Scholar 

  • Durand, D.. 1984. The somatic shunt cable model for neurons.Biophys. J. 46, 645–653.

    Article  Google Scholar 

  • Fu, P., B. L. Bardakjian and P. L. Carlen. 1992. Ethanol uncouples dentate granule neurons by increasing junctional resistance: a multineuronal system model approach.Neuroscience 51, 47–54.

    Article  Google Scholar 

  • Getting, P. A. 1974. Modification of neuron properties by electrotonic synapses. I. Input resistance time constant, and integration.J. Neurophysiol. 37, 846–857.

    Google Scholar 

  • Jack, J. J. B., D. Noble and R. W. Tsien. 1975.Electric Current Flow in Excitable Cells Oxford: Clarendon Press.

    Google Scholar 

  • Johnston, D. 1981. Passive cable properties of hippocampal CA3 pyramidal neurons.Cell. Mol. Neurobiol. 1, 41–55.

    Article  Google Scholar 

  • Johnston, D. and T. H. Brown. 1983. Interpretation of voltage clamp measurements in hippocampal neurons.J. Neurophysiol. 50, 464–486.

    Google Scholar 

  • MacVicar, B. A. and F. E. Dudek. 1980. Local synaptic circuits in rat hippocampus: interactions between pyramidal cells.Brain Res. 184, 220–223.

    Article  Google Scholar 

  • MacVicar, B. A. and F. E. Dudek. 1980. Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus.Brain Res. 196, 494–497.

    Article  Google Scholar 

  • MacVicar, B. A. and F. E. Dudek. 1981. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices.Science 213, 782–785.

    Article  Google Scholar 

  • MacVicar, B. A., N. Ropert and K. Krnjevic. 1982. Dye-coupling between pyramidal cells of rat hippocampusin vivo.Brain Res. 238, 239–244.

    Article  Google Scholar 

  • Major, G., A. U. Larkman, P. Jonas, B. Sakman and J. J. B. Jack. 1994. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices.J. Neurosci. 14, 4613–4638.

    Google Scholar 

  • Poznanski, R. R. 1987. Techniques for obtaining analytical solutions for the somatic shunt cable model.Math. Biosci. 85, 13–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Poznanski, R. R. 1988. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.IMA J. Math. Appl. Med. & Biol. 5, 113–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Poznanski, R. R. 1994. Electrotonic length estimates of CA3 hippocampal pyramidal neurons.Neurosci. Res. Commun. 14, 93–100.

    Google Scholar 

  • Publicover, N. G. 1989. Mathematical models of intercellular communication. InCell Interactions and Gap Junctions, N. Sperelakis and W. C. Cole, (Eds) Vol. 1, pp. 183–201. Boca Raton: CRC Press.

    Google Scholar 

  • Rall, W. 1969. Time constants and electrotonic length of membrane cylinders and neurons.Biophys. J. 9, 1483–1508.

    Article  Google Scholar 

  • Rall, W. 1981. Functional aspects of neuronal geometry. InNeurones Without Impulses, A. Roberts and B. M. Bush (Eds). Cambridge: Cambridge University Press.

    Google Scholar 

  • Reece, L. J. and P. A. Schwartzkroin. 1991. Effect of cholinergic agonists on immature rat hippocampal neurons.Develop Brain Res. 60, 29–42.

    Article  Google Scholar 

  • Schmalbruch, H. and H. Jahnsen. 1981. Gap-junctions on CA3 pyramidal cells of guinea pig hippocampus shown by freeze-fracture.Brain Res. 217, 175–178.

    Article  Google Scholar 

  • Schuster, T. H. 1992. Gap junctions and electrotonic coupling between hippocampal neurons: recent evidence and possible significance—a review.Concepts Neurosci. 3, 135–155.

    Google Scholar 

  • Skrzypek, J. 1984. Electrical coupling between horizontal cell bodies in the tiger salamander retina.Vis. Research 24, 701–711.

    Article  Google Scholar 

  • Spruston, N. and D. Johnston. 1992. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons.J. Neurophysiol. 67, 508–529.

    Google Scholar 

  • Spruston, N., D. B. Jaffe, S. H. Williams and D. Johnston. 1993. Voltage-and space-clamp errors associated with the measurement of electrotonically remote synaptic events.J. Neurophysiol. 70, 781–802.

    Google Scholar 

  • Teranishi, T., K. Negishi and S. Kato. 1983. Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina.Nature 301, 243–246.

    Article  Google Scholar 

  • Traub, R. D. 1982. Simulation of intrinsic bursting in CA3 hippocampal neurons.Neuroscience 7, 1233–1242.

    Article  Google Scholar 

  • Traub, R. D., F. E. Dudek, C. P. Taylor and W. D. Knowles. 1985. Simulation of hippocampal afterdischarges synchronized by electrical interactions.Neuroscience 14, 1033–1038.

    Article  Google Scholar 

  • Traub, R. D. and R. Miles. 1991.neuronal Networks of the Hippocampus. New York: Cambridge University Press.

    Book  Google Scholar 

  • Traub, R. D. and R. K. S. Wong. 1983. Synaptic mechanisms underlying interictal spike initiation in a hippocampal network.Neurology 33, 257–266.

    Article  Google Scholar 

  • Traub, R. D., R. K. S. Wong, R. Miles and H. Michelson. 1991. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on instrinsic conductances.J. Neurophysiol. 66, 635–650.

    Google Scholar 

  • Treves, A. and E. T. Rolls. 1994. Computational analysis of the role of the hippocampus in memoryHippocampus 4, 374–391.

    Article  Google Scholar 

  • Turner, D. A. 1984. Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate).Biophys. J. 46, 73–84.

    Article  Google Scholar 

  • Turner, D. A. and P. A. Schwartzkroin. 1983. Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons.J. Neurosci. 3, 2381–2394.

    Google Scholar 

  • Turner, D. A. and P. A. Schwartzkroin. 1984. Passive electrotonic structure and dendritic properties of hippocampal neurons. InBrain Slices, R. Dingledine (Ed), pp. 25–50. New York: Plenum Press.

    Chapter  Google Scholar 

  • Turner, D. A. and D. L. Deupree. 1991. Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats.Neurobiol. Aging 12, 201–210.

    Article  Google Scholar 

  • Turner, D. A., H. V. Wheal, E. Stockley and H. Cole. 1991. Three dimensional reconstruction and analysis of the cable properties of neurons. InCellular Neurobiology, J. Chad and H. Wheal (Eds), pp. 225–246. Oxford: IRL Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulzer, B., Weisbuch, G. Idiotypic regulation of B cell differentiation. Bltn Mathcal Biology 57, 841–864 (1995). https://doi.org/10.1007/BF02458297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458297

Keywords

Navigation