Skip to main content
Log in

Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

More than 20 years after its proposal, Keller and Segel's model (1971,J. theor. Biol.,30, 235–248) remains by far the most popular model for chemical control of cell movement. However, before the Keller-Segel equations can be applied to a particular system, appropriate functional forms must be specified for the dependence on chemical concentration of the cell transport coefficients and the chemical degradation rate. In the vast majority of applications, these functional forms have been chosen using simple intuitive criteria. We focus on the particular case of eukaryotic cell movement, and derive an approximation to the detailed model of Sherrattet al. (1993,J. theor. Biol.,162, 23–40). The approximation consists of the Keller-Segel equations, with specific forms predicted for the cell transport coefficients and chemical degradation rate. Moreover, the parameter values in these functional forms can be directly measured experimentally. In the case of the much studied neutrophil-peptide system, we test our approximation using both the Boyden chamber and under-agarose assays. Finally, we show that for other cell-chemical interactions, a simple comparison of time scales provides a rapid check on the validity of our Keller-Segel approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Alt, W. 1980. Biased random walk models for chemotaxis and related diffusion approximations.J. Math. Biol. 9, 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Alt, W. and D. A. Lauffenburger. 1987. Transient behaviour of a chemotaxis system modeling certain types of tissue inflammation.J. Math. Biol. 24, 691–722.

    MATH  MathSciNet  Google Scholar 

  • Balding, D. and D. L. S. McElwain. 1985. A mathematical model of tumor-induced capillary growth.J. theor. Biol. 114, 53–73.

    Article  Google Scholar 

  • Berg, H. C. 1988. A physicist looks at bacterial chemotaxis.Cold Spring Harb. Symp. Quant. Biol. 53, 1–9.

    Google Scholar 

  • Bignold, L. P. 1987. A novel polycarbonate (Nuclepore) membrane demonstrates chemotaxis, unaffected by chemokinesis, of polymorphonuclear leukocytes in the Boyden chamber.J. Immun. Meth. 105, 275–280.

    Article  Google Scholar 

  • Bignold, L. P. 1988. Measurement of chemotaxis of polymorphonuclear leukocytes in vitro.J. Immun. Meth. 108, 1–18.

    Article  Google Scholar 

  • Boon, J. P. and B. Herpigny. 1986. Model for chemotactic bacterial bands.Bull. math. Biol. 48, 1–19.

    Article  MATH  Google Scholar 

  • Boyden, S. V. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes.J. exp. Med. 115, 453–466.

    Article  Google Scholar 

  • Buettner, H. M., D. A. Lauffenburger and S. H. Zigmond. 1989a. Cell transport in the Millipore filter assay.Am. Inst. Chem. Engng Jl 35, 459–465.

    Google Scholar 

  • Buettner, H. M., D. A. Lauffenburger and S. H. Zigmond. 1989b. Measurement of leukocyte motility and chemotaxis parameters with the Millipore filter assay.J. Immun. Meth. 123, 25–37.

    Article  Google Scholar 

  • Cassimeris, L. and S. H. Zigmond. 1990. Chemoattractant stimulation of polymorphonuclear leucocyte locomotion.Seminars Cell Biol. 1, 125–134.

    Google Scholar 

  • Caterina, M. J. and P. N. Devreotes. 1991. Molecular insights into eukaryotic chemotaxis.FASEB Jl 5, 3078–3085.

    Google Scholar 

  • Chaplain, M. A. J. and A. M. Stuart. 1991. A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue.IMA J. Math. Appl. Med. Biol. 8, 191–220.

    MATH  Google Scholar 

  • Charnick, S. B., E. S. Fisher and D. A. Lauffenburger. 1991. Computer simulations of cell-target encounter including biased cell motion toward targets: single and multiple cell-target simulations in two dimensions.Bull. math. Biol. 53, 591–621.

    Article  MATH  Google Scholar 

  • Devreotes, P. N. and S. H. Zigmond. 1988. Chemotaxis in eukaryotic cells: a focus on leukocytes andDictyostelium.Ann. Rev. Cell Biol. 4, 649–686.

    Google Scholar 

  • Falk, W., R. H. Goodwin and E. J. Leonard. 1979. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration.J. Immun. Meth. 33, 239–247.

    Article  Google Scholar 

  • Farrel, B. E., R. P. Daniele and D. A. Lauffenburger. 1990. Quantitative relationships between single-cell and cell population model parameters for chemosensory migration responses of alveolar macrophages to C5a.Cell. Motil. Cytoskel. 16, 279–293.

    Article  Google Scholar 

  • Ford, R. M. and D. A. Lauffenburger. 1991. Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients.Bull. math. Biol. 53, 721–749.

    Article  MATH  Google Scholar 

  • Gex-Fabry, M. and C. Delisi. 1984. Reeptor-mediated endocytosis: a model and its implications for experimental analysis.Am. J. Physiol. 247, R768-R7779.

    Google Scholar 

  • Harvath, L. and R. R. Aksamit. 1989. Human granulocytes and granulocytes from other species demonstrate differences in chemotactic responsiveness to oxidized N-formyl-methionyl-leucyl-phenylalanine.Comp. Biochem. Physiol. A 92, 97–100.

    Article  Google Scholar 

  • Janssens, P. M. W. and R. Van Driel. 1984.Dictyostelium discoideum cell membranes contain masked chemotactic receptors for cyclic AMP.FEBS Lett. 176, 245–249.

    Article  Google Scholar 

  • Janssens, P. M. W. and P. Van Haastert. 1987. Molecular basis of transmembrane signal transduction inDictyostelium discoideum.Microbiol. Rev. 51, 396–418.

    Google Scholar 

  • Kareiva, P. and G. Odell. 1987. Swarms of predators exhibit preytaxis if individual predators use area-restricted search.American Naturalist 130, 233–270.

    Article  Google Scholar 

  • Keller, E. F. 1980. Assessing the Keller-Segel model: howe has it fared? InBiological Growth and Spread, W. Jäger, H. Rost, and P. Tautu (Eds), Lecture Notes in Biomathematics, Vol. 38, pp. 379–387. Berlin: Springer.

    Google Scholar 

  • Keller, E. F. and L. A. Segel. 1971a. Model for chemotaxis.J. theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Keller, E. F. and L. A. Segel. 1971b. Travelling bands of chemotactic bacteria: a theoretical analysis.J. theor. Biol. 30, 235–248.

    Article  Google Scholar 

  • Lapidus, I. R. 1980. Pseudo-chemotaxis by microorganisms in an attractant gradient.J. theor. Biol. 86, 91–103.

    Article  MathSciNet  Google Scholar 

  • Lapidus, I. R. and R. Schiller. 1976. Model for the chemotactic response of a bacterial population.Biophys. Jl 16, 779–789.

    Article  Google Scholar 

  • Lauffenburger, D. and R. Aris. 1979. Measurement of leukocyte motility and chemotaxis parameters using a quantitative analysis of the under-agarose migration assay.Math. Biosci. 44, 121–138.

    Article  MATH  Google Scholar 

  • Lauffenburger, D., R. Aris and C. R. Kennedy. 1984. Traveling bands of chemotactic bacteria in the context of population growth.Bull. math. Biol. 46, 19–40.

    Article  MATH  Google Scholar 

  • Lauffenburger, D., C. Rothman and S. H. Zigmond. 1983. Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay.J. Immun. 131, 940–947.

    Google Scholar 

  • Lauffenburger, D. A., R. T. Tranquillo and S. H. Zigmond. 1988. Concentration gradients of chemotactic factors in chemotaxis assays.Meth. Enzym. 162, 85–101.

    Google Scholar 

  • Lentz, T. L. 1971.Cell Fine Structure. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Maini, P. K., M. R. Myerscough, K. H. Winters and J. D. Murray. 1991. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation.Bull. math. Biol. 53, 701–719.

    Article  MATH  Google Scholar 

  • Murray, J. D., D. C. Deeming and M. J. W. Ferguson. 1990. Size dependent pigmentation pattern formation in embryos ofAlligator mississipiensis: time of initiation of pattern formation mechanism.Proc. R. Soc. Lond. B 239, 279–293.

    Article  Google Scholar 

  • Nagai, T. and T. Ikeda. 1991. Traveling waves in a chemotactic model.J. math. Biol. 30, 169–184.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, R. D., P. G. Quie and R. L. Simmons. 1975. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes.J. Immun. 115, 1650–1656.

    Google Scholar 

  • Omann, G. M., R. A. Allen, G. M. Bokosh, R. G. Painter, A. E. Traynor and L. A. Sklar. 1987. Signal transduction and cytoskeletal activation in the neutrophil.Physiol. Rev. 67, 285–322.

    Google Scholar 

  • Pittenger, J. B. and C. H. Dent. 1988. A mechanism for the direct perception of change: the example of bacterial chemotaxis.Perception 17, 119–133.

    Google Scholar 

  • Rivero, M. A., R. T. Tranquillo, H. M. Buettner and D. A. Lauffenburger. 1989. Transport models for chemotactic cell populations based on individual cell behaviourChem. Engng Sci. 44, 2881–2897.

    Article  Google Scholar 

  • Rosen, G. 1985. Stable heterogeneous spatial distributions of oxygen and chemotacticescherichia coli with Verhulst limited population growth.J. theor. Biol. 112, 877–881.

    Google Scholar 

  • Rothman, C. and D. Lauffenburger. 1983. Analysis of the linear under-agarose leukocyte chemotaxis assay.Ann. Biomed. Engng 11, 451–477.

    Google Scholar 

  • Segel, L. A. 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis.J. theor. Biol. 57, 23–42.

    Article  MathSciNet  Google Scholar 

  • Segel, L. A. 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis.SIAM J. Appl. Math. 32, 653–665.

    Article  MATH  Google Scholar 

  • Segel, L. A. 1980. Analysis of population chemotaxis. InAnalysis of Population Chemotaxis, L. A. Segel (Ed.), pp. 486–501. Cambridge. Cambridge University Press.

    Google Scholar 

  • Segel, L. A. 1984. Taxes in cellular ecology. InMathematical Ecology, Proceedings, Trieste 1982, S. A. Levin and T. G. Hallam (Eds), Lecture Notes in Biomathematics, Vol. 54, pp. 407–424. Berlin. Springer.

    Google Scholar 

  • Segel, L. A., A. Goldbeter, P. N. Devreotes and B. E. Knox. 1986. A mechanism for exact sensory adaptation based on receptor modification.J. theor. Biol. 120, 151–179.

    MathSciNet  Google Scholar 

  • Sherratt, J. A., E. H. Sage and J. D. Murray. 1992. Chemical control of eukaryotic cell movement: a new model.J. theor. Biol. 162, 23–40.

    Article  Google Scholar 

  • Sklar, L. A., D. A. Finney, Z. G. Oades, A. L. Jesaitis, R. G. Painter and C. G. Cochrane. 1984. The dynamics of ligand-receptor interactions.J. Biol. Chem. 259, 5661–5669.

    Google Scholar 

  • Smith, G. D. 1985.Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Snyderman, R. and E. J. Fudman. 1980. Demonstration of a chemotactic factor receptor on macrophages.J. Immun. 124, 2754–2757.

    Google Scholar 

  • Stickle, D. F., D. A. Lauffenburger and R. P. Daniele. 1985. The motile response of lung macrophages: theoretical and experimental approaches using the linear under-agarose assay.J. Leukoc. Biol. 38, 383–401.

    Google Scholar 

  • Sullivan, S. J. and S. H. Zigmond. 1980. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes.J. Cell Biol. 85, 703–711.

    Article  Google Scholar 

  • Tranquillo, R. T., D. A. Lauffenburger and S. H. Zigmond. 1988a. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations.J. Cell Biol. 106, 303–309.

    Article  Google Scholar 

  • Tranquillo, R. T., S. H. Zigmond and D. A. Lauffenburger. 1988b. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.Cell Motil. Cytoskel. 11, 1–15.

    Article  Google Scholar 

  • Van Haastert, P. J. M. 1983. Sensory adaptation ofDictyostelium discoideum cells to chemotactic signals.J. Cell Biol. 96, 1559–1565.

    Article  Google Scholar 

  • Van Haarstert, P. J. M. 1987. Down-regulation of cell surface cyclic AMP receptors and desensitization of cyclic AMP-stimulated adenylate cyclase by cyclic AMP inDictyostelium discoideum. Kinetics and concentration dependence.J. biol. Chem. 262, 7700–7704.

    Google Scholar 

  • Zigmond, S. H. 1981. Consequences of chemotactic peptide receptor modulation for leukocyte orientation.J. Cell. Biol. 88, 644–647.

    Article  Google Scholar 

  • Zigmond, S. H. 1989. Cell locomotion and chemotaxis.Curr. Op. Cell Biol. 1, 80–89.

    Article  Google Scholar 

  • Zigmond, S. H. and J. G. Hirsch. 1973. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell-derived chemotactic factor.J. Exp. Med. 137, 387–410.

    Article  Google Scholar 

  • Zigmond, S. H., S. J. Sullivan and D. A. lauffenburger. 1982. Kinetic analysis of chemotactic peptide receptor modulation.J. Cell Biol. 92, 34–43.

    Article  Google Scholar 

  • Zimmerli, W., B. Seligmann and J. I. Gallin. 1986. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to chemotactic peptide N-formylmethionylleucylphenylalanine and increases complement component C3bi receptor expression.J. Clin. Invest. 77, 925–933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherratt, J.A. Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model. Bltn Mathcal Biology 56, 129–146 (1994). https://doi.org/10.1007/BF02458292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458292

Keywords

Navigation