Skip to main content
Log in

“The arrival of the fittest”: Toward a theory of biological organization

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The formal structure of evolutionary theory is based upon the dynamics of alleles, individuals and populations. As such, the theory must assume the prior existence of these entities. This existence problem was recognized nearly a century ago, when DeVries (1904,Species and Varieties: Their Origin by Mutation) stated. “Natural selection may explain the survival of the fittest, but it cannot explain the arrival of the fittest.” At the heart of the existence problem is determining how biological organizations arise in ontogeny and in phylogeny.

We develop a minimal theory of biological organization based on two abstractions from chemistry. The theory is formulated using λ-calculus, which provides a natural framework capturing (i) the constructive feature of chemistry, that the collision of molecules generates specific new molecules, and (ii) chemistry's diversity of equivalence classes, that many different reactants can yield the same stable product. We employ a well-stirred and constrained stochastic flow reactor to explore the generic behavior of large numbers of applicatively interacting λ-expressions. This constructive dynamical system generates fixed systems of transformation characterized by syntactical and functional invariances.

Organizations are recognized and defined by these syntactical and functional regularities. Objects retained within an organization realize and algebraic structure and possess a grammar which is invariant under the interaction between objects. An organization is self-maintaining, and is characterized by (i) boundaries established by the invariances, (ii) strong self-repair capabilities responsible for a robustness to perturbation, and (iii) a center, defined as the smallest kinetically persistent and self-maintaining generator set of the algebra.

Imposition of different boundary conditions on the stochastic flow reactor generates different levels of organization, and a diversity of organizations within each level. Level 0 is defined by selfcopying objects or simple ensembles of copying objects. Level 1 denotes a new object class, whose objects are self-maintaining organizations made of Level 0 objects, and Level 2 is defined by self-maintaining metaorganizations composed of Level 1 organizations.

These results invite analogy to the history of life, that is, to the progression from self-replication to self-maintaining procaryotic organizations to ultimately yield self-maintaining eucaryotic organizations. In our system self-maintaining organizations arise as a generic consequence of two features of chemistry, without appeal to natural selection. We hold these findings as calling for increased attention to the structural basis of biological order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anderson, P. W. 1972. More is different.Science 177, 393–396.

    Google Scholar 

  • Baas, N. A. 1993. Emergence and higher order structures. InProceedings of the Conference on Systems Research and Cybernetics, Baden-Baden. In press.

  • Bachmann, P. A., P. L. Luisi and J. Lang. 1992. Autocatalytic self-replicating micelles as models for prebiotic structures.Nature 357, 57–59.

    Article  Google Scholar 

  • Bagley, R. J. and J. D. Farmer. 1992. Spontaneous emergence of a metabolism. InArtificial Life II, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 93–141. Redwood City: Addison-Wesley.

    Google Scholar 

  • Bagley, R. J., J. D. Farmer and W. Fontana. 1992. Evolution of a metabolism. InArtificial Life II, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 141–158 Redwood City: Addison-Wesley.

    Google Scholar 

  • Bagley, R. J., J. D. Farmer, S. A. Kauffman, N. H. Packard, A. S. Perelson and I. M. Stadnyk. 1989. Modeling adaptive biological systems.Biosystems 23, 113–138.

    Article  Google Scholar 

  • Banatre, J.-P. and D. Le Metayer. 1986. A new computational model and its discipline of programming. Technical Report. INRIA Report 566.

  • Barendregt, H. G. 1984.The Lambda Calculus: Its Syntax and Semantics (second edition). Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Berry, G. and G. Boudol. 1990. The Chemical Abstract Machine. In17th ACM Annual Symposium on Principles of Programming Languages, pp. 81–94. New York: ACM Press.

    Google Scholar 

  • Bjoerlist, M. C. and P. Hogeweg. 1991. Spiral wave structure in prebiotic evolution: hypercycles stable against parasites.Physica D 48, 17–28.

    Article  Google Scholar 

  • Buss, L. W. 1987.The Evolution of Individuality. Princeton: Princeton University Press.

    Google Scholar 

  • Buss, L. W. 1994. Protocell life cycles. InEarly Life on Earth, S. Bergstrom (Ed.). New York: Columbia University Press, In press.

    Google Scholar 

  • Church, A. 1932. A set of postulates for the foundation of logic.Annals of Math. (2)33, 346–366 and34, 839–864.

    Article  MATH  MathSciNet  Google Scholar 

  • Church, A. 1941.The Calculi of Lambda Conversion. Princeton: Princeton University Press.

    Google Scholar 

  • Church, A. and J. B. Rosser. 1936. Some properties of conversion.Trans. Amer. Math. Soc. 39, 472–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Curry, H. B. and R. Feys. 1958.Combinatory Logic. Volume 1. Amsterdam: North-Holland.

    Google Scholar 

  • Curry, H. B., J. R. Hindley and J. P. Seldin 1972.Combinatory Logic. Volume 2, Amsterdam: North-Holland.

    Google Scholar 

  • Dyson, F. 1985.Origins of Life, Cambridge: Cambridge University Press.

    Google Scholar 

  • Eigen, M. 1971. Self-organization of matter and the evolution of biological macro-molecules.Naturwissenschaften 58, 465–526.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1977. The hypercycle. A principle of natural self-organization. A: Emergence of the hypercycle.Naturwissenschaften 64, 541–565.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1978a. The hypercycle. A principle of natural self-organization. B: The abstract hypercycle.Naturwissenschaften 65, 7–41.

    Article  Google Scholar 

  • Eigen, N. and P. Schuster. 1978b. The hypercycle. A principle of natural self-organization. C: The realistic hypercycle.Naturwissenschaften 65, 341–369.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1979.The Hypercycle. Berlin: Springer.

    Google Scholar 

  • Eigen, M. and P. Schuster. 1982. Stages of emerging life-five principles of early organization.J. Mol. Evol. 19, 47–61.

    Article  Google Scholar 

  • Farmer, J. D., S. A. Kauffman and N. H. Packard. 1986. Autocatalytic replication of polymers.Physica D 22, 50–67.

    Article  MathSciNet  Google Scholar 

  • Fisher, R. A. 1930.The Genetical Theory of Natural Selection. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Fontana, W. 1990. Algorithmic chemistry: a model for functional self-organization. Technical Report. SFI90-011, Santa Fe Institute, Santa Fe, and Technical Report LA-UR-90-1959, Los Alamos National Laboratory, Los Alamos.

    Google Scholar 

  • Fontana, W. 1991. Functional self-organization in complex systems. In1990 Lectures in Complex Systems, L. Nadel and D. Stein (Eds), pp. 407–426. Redwood City: Addison-Wesley.

    Google Scholar 

  • Fontana, W. 1992. Algorithmic chemistry. InArtificial Life II, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 159–209. Redwood City: Addison-Wesley.

    Google Scholar 

  • Fontana, W. and L. W. Buss. 1993. What would be conserved ‘if the tape were played twice’Proceedings of the National Academy of Sciences, USA. (In press).

  • Forrest, S. 1990. Emergent computation: self-organizing, collective cooperative phenomena in natural and artificial computing networks.Physica D 42, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Fox, S. W. and K. Dose. 1977.Molecular Evolution and the Origin of Life. New York: Marcel Dekker.

    Google Scholar 

  • Futrelle, R. P. and A. W. Miller. 1992. Simulation of metabolism and evolution using Quasichemistry. InBiomedical Modeling and Simulation, J. Eisenfeld, D. S. Levine and M. Witten (Eds), pp. 273–280. Amsterdam: Elsevier.

    Google Scholar 

  • Gould, S. J. and R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme.Proc. R. Soc., London B205, 581–598.

    Article  Google Scholar 

  • Haldane, J. B. S. 1932.The Causes of Evolution, New York: Longmans, Green.

    Google Scholar 

  • Haldane, J. B. S. 1954. The origins of life.New Biology 16, 12–27.

    Google Scholar 

  • Hindley, J. R. and J. P. Seldin. 1986.Introduction to Combinators and λ-Calculus. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hofbauer, J. and K. Sigmund. 1988.The Theory of Evolution and Dynamics Systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Huet, G. 1992.Constructive Computation Theory. Part I. Notes de Cours. DEa Informatique, Mathématiques et Applications. (Available by anonymous ftp from ftp. inriafr,/INRIA/formel /cct/CCT.dvi.)

  • Huet, G. and D. C. Oppen. 1980. Equations as rewrite rules. InFormal Languages: Perspectives and Open Problems, R. Book (Ed.), New York: Academic Press.

    Google Scholar 

  • Jacob, F. (1982).The Possible and the Actual. New York: Pantheon Books.

    Google Scholar 

  • Kauffman, S. A. 1971. Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems.J. Cybernetics 1, 71–96.

    Google Scholar 

  • Kauffman, S. A. 1986. Autocatalytic sets of proteins.J. theor. Biol. 119, 1–24.

    Article  Google Scholar 

  • von Kiedrowski, G. 1986. A self-replicating hexadeoxynucleotide.Angew. Chem. 98, 932–934.

    Google Scholar 

  • Knuth, D. E. and P. E. Bendix. 1970. Simple word problems in universal algebra. InComputational Problems in Abstract Algebra, J. Leech (ed.), pp. 263–297. New York: Pergamon Press.

    Google Scholar 

  • Lakoff, G. 1987.Women, Fire, and Dangerous Things. What Categories Reveal about the Mind. Chicago: University of Chicago Press.

    Google Scholar 

  • Lane, D. 1993a. Artificial worlds and economics. Part I.J. Evol. Econ. 3, 89–107.

    Article  Google Scholar 

  • Lane, D. 1993b. Artificial worlds and economics. Part II.J. Evol. Econ. (in press).

  • Leifer, E. M. 1991.Actors as Observers. A Theory of Skill in Social Relationships New York: Garland Publishing.

    Google Scholar 

  • Lewontin, R. C. 1970. The units of selection.Ann. Rev. Ecol. System. 1, 1–18.

    Article  MATH  Google Scholar 

  • Lindgren, K. 1992. Evolutionary phenomena in simple dynamics. InArtificial Life II, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 295–312. Redwood City: Addison-Wesley.

    Google Scholar 

  • Lotka, A. J. 1925.Elements of Physical Biology. New York: Dover.

    MATH  Google Scholar 

  • Luisi, P. L. 1993. Defining the transition to life: self-replicating bounded structures and chemical autopoiesis. InThinking About Biology, W. Stein and F. J. Varela (eds), pp. 3–23. Redwood City: Addison-Wesley.

    Google Scholar 

  • Maturana, H. and F. Varela. 1973.De Máquinas y Seres Vivos: Una teoría de la organizacíon biológica. Santiago de Chile: Editorial Universitaria. (Reprinted in English in Maturana and Varela, 1980).

    Google Scholar 

  • Maturana, H. and F. Varela. 1980.Autopoiesis and Cognition: The Realization of the Living. Boston: D. Reidel.

    Google Scholar 

  • May, R. M. (ed.) 1976.Theoretical Ecology: Principles and Applications. Oxford: Blackwell Scientific.

    Google Scholar 

  • Maynard-Smith, J. 1982.Evolution and the Theory of Games. Cambridge. Cambridge University Press.

    Google Scholar 

  • Maynard-Smith, J., R. Burian, S. A. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup and L. Wolpert. 1985. Development constraints and evolution.Q. Rev. Biol. 60, 265–287.

    Article  Google Scholar 

  • Miller, S. M. and L. E. Orgel. 1974.The Origins of Life on the Earth. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Morowitz, H. J. 1992.Beginnings of Cellular Life. New Haven: Yale University Press.

    Google Scholar 

  • Newman, M. H. A. 1941. On theories with a combinatorial definition of “equivalence”.Annals of Math. 43, 223–243.

    Article  Google Scholar 

  • Niesert, U., D. Harnasch and C. Bresch. 1981. Origin of life Between Scylla and Charybdis.J. Mol. Evol. 17, 348–353.

    Article  Google Scholar 

  • Odifreddi, P. 1989.Classical Recursion Theory. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Oparin, A. I. 1924.Proiskhozhdenie zhizni. Moscow: Moskovskij Rabochij.

    Google Scholar 

  • Padgett, J. F. and C. K. Ansel. 1993. Robust action in the rise of the Medici: 1400–1434.Am. J. Soc. 98, 1259–1319.

    Article  Google Scholar 

  • Penrose, R. 1989.The Emperor's New Mind. Oxford: Oxford University Press.

    Google Scholar 

  • Revesz, G. E. 1988.Lambda-Calculus, Combinators, and Functional Programming. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rössler, O. 1971. Ein systemtheoretisches Modell zur Biogenese.Zeitschrift für Naturforschung 26b, 741–746.

    Google Scholar 

  • Stadler, P.F., W. Fontana and J. H. Miller. 1993. Random catalytic reaction networks.Physica D 63, 378–392.

    Article  MATH  MathSciNet  Google Scholar 

  • Thürk, M. 1993. Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. PhD thesis. Friedrich-Schiller Universität Jena. Germany.

    Google Scholar 

  • Tjiuikaua, T., P. Ballester and J. Rebek Jr. 1990. A self-replicating system.J. Am. Chem. Soc. 112, 1249–1250.

    Article  Google Scholar 

  • Varela, F., A. Coutinho, B. Dupire and N. N. Vaz. 1988. Cognitive networks Immune, neural, and otherwise. InTheoretical Immunology, Part Two, A. S. Perelson (ed.), pp. 359–375. Redwood City: Addison-Wesley.

    Google Scholar 

  • Varela, F., H. R. Maturana and R. Uribe. 1974. Autopoiesis: the organization of living systems, its characterization and a model.Bio Systems 5, 187–196.

    Google Scholar 

  • Vrba, E. and S. J. Gould. 1986. Sorting is not selection.Paleobiology 12, 217–228.

    Google Scholar 

  • DeVries, H. 1904.Species and Varieties: Their Origin by Mutation. Chicago: Open Court.

    Google Scholar 

  • Winograd, T. and F. Flores. 1986.Understanding Computers and Cognition. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations.Genetics 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, W., Buss, L.W. “The arrival of the fittest”: Toward a theory of biological organization. Bltn Mathcal Biology 56, 1–64 (1994). https://doi.org/10.1007/BF02458289

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458289

Keywords

Navigation