Skip to main content
Log in

An evolution of pulse speed in arteries

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work, treating the artery as a thick-walled cylindrical shell made of an incompressible, isotropic and elastic solid, utilizing the large deformation theory and the stress-strain relation proposed by Demiray (1976b,Trans. ASME Ser. E, J. Appl. Mech.,98, 194–197), an explicit expression for the pulse speed is obtained and the effect of lumen pressure and the axial stretch on wave speed is discussed. Numerical results indicate that the wave speed increases with lumen pressure but decreases with the axial stretch. The results of the present model are compared with our previous work (Demiray, 1988,J. Biomech. 21, 55–58) on the same subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

t kl :

Cauchy stress tensor

P :

Hydrostatic pressure

P i :

Lumen pressure

c kl :

Finger deformation tensor

F k K :

Deformation gradient

g kl :

Reciprocal metric tensor of the spatial frame

G KL :

Reciprocal metric tensor of the material frame

Σ:

Strain energy density function

I 1,I 2,I 3 :

Basic invariants of Finger deformation tensor

λ z :

Stretch ratio in the axial direction

λθ :

Stretch ratio in circumferential direction

λ iθ :

Stretch ratio on the inner surface

λ 0θ :

Stretch ratio on the outer surface

r i :

Deformed inner radius

r o :

Deformed outer radius

Literature

  • Anliker M., M. B. Histand and E. Ogden. 1968. Dispersion and attenuation of small artificial pressure waves in the canine aorta.Circulation Res. 23, 539–551.

    Google Scholar 

  • Atabek, H. B. and H. S. Lew. 1966. Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube.Biophys. J. 7, 480–503.

    Google Scholar 

  • Bergel, D. H. 1961. The static elastic properties of arterial wall.J. Physiol. 156, 445–457.

    Google Scholar 

  • Demiray, H. 1976a. Some basic problems in biophysics.Bull. Math. Biol. 38, 701–711.

    Article  MATH  Google Scholar 

  • Demiray, H. 1976b. Stresses in ventricular wall.Trans. ASME Ser. E. J. Appl. Mech.,98, 194–197.

    Google Scholar 

  • Demiray, H. 1988. Pulse velocities in initial stressed arteries.J Biomech. 21, 55–58.

    Article  Google Scholar 

  • Demiray, H. 1992. Wave propagation through a viscous fluid contained in a prestressed thin elastic tube.Int. J. Eng. Sci. 30, 1607–1620.

    Article  MATH  MathSciNet  Google Scholar 

  • Demiray, H. and N. Antar. 1994. Harmonic waves in an elastic thin tube filled with a viscous fluid. Unpublished.

  • Demiray, H. and A. Ercengiz. 1991. Wave propagation in a prestressed elastic tube filled with a viscous fluid.Int. J. Eng. Sci. 29, 575–583.

    Article  MATH  MathSciNet  Google Scholar 

  • Eringen, A. C. 1962.Nonlinear Theory of Continuous Media. New York: McGraw-Hill.

    Google Scholar 

  • Fung, Y. C. 1985.Biodynamics: Circulation. New York: Springer.

    Google Scholar 

  • Fung, Y. C., K. Fronek and P. Pattitucci. 1979. Pseudoelasticity of arteries and choice of its mathematical expression.Am. J. Physiol. 35, 626–631.

    Google Scholar 

  • Kuiken, G. D. C. 1984. Wave propagation in a thin walled liquid-filled initially stressed tube.J. Fluid. Mech.,141, 289–308.

    Article  MATH  Google Scholar 

  • Mirsky, I. 1973. Ventricular and arterial wall stresses based on large deformation analysis.Biophys. J. 13, 1141–1159.

    Article  MathSciNet  Google Scholar 

  • Rachev, A. I. 1979. Effect of transmural pressure and muscular activity on pulse waves in arteries.Trans. ASME J. Biomech. Eng. 102, 119–123.

    Article  Google Scholar 

  • Simon, B. R., A. S. Kobayashi, D. E. Stradness and C. A. Wiederhelm. 1972. Reevaluation of arterial constitutive laws.Circulation Res. 30, 491–500.

    Google Scholar 

  • Womersley, J. R. 1957. An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Technical Report TR 56-614, WADC.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiray, H. An evolution of pulse speed in arteries. Bltn Mathcal Biology 58, 129–140 (1996). https://doi.org/10.1007/BF02458285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458285

Keywords

Navigation