Skip to main content
Log in

Environmental fluctuations and the maintenance of genetic diversity in age or stage-structured populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The ability of random fluctuations in selection to maintain genetic diversity is greatly increased when generations overlap. This result has been derived previously using genetic models with very special assumptions about the population age structure. Here we explore its robustness in more realistic population models, with very general age structure or physiological structure. For a range of genetic models (haploid, diploid, single and multilocus) we find that the condition for maintaining genetic diversity generalizes almost without change. Genetic diversity is maintained by selection if a product of the form (generation overlap)×(selection intensity)×(variability in the selection regime) is sufficiently large, where the generation overlap is measured in units of Fisher's reproductive value. This conclusion is based on a local evolutionary stability analysis, which differs from the standard “protected polymorphism” criterion for the maintenance of genetic diversity. Simulation results match the predictions from the local stability analysis, but not those from the protected polymorphism criterion. The condition obtained here for maintaining genetic diversity requires fitness fluctuations that are substantial but well within the range observed in many studies of natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Barton, N. H. and M. Turelli. 1989. Evolutionary quantitative genetics: how little do we know?Ann. Rev. Genetics 23: 337–370.

    Google Scholar 

  • Barton, N. H. and M. Turelli 1991. Natural and sexual selection on many loci.Genetics 127, 229–255.

    Google Scholar 

  • Bull, J. J. 1987. Evolution of phenotypic variance.Evolution,41, 313–315.

    Article  Google Scholar 

  • Caswell, H. 1989.Matrix Population Models, Sunderland MA: Sinauer Associates, Inc.

    Google Scholar 

  • Charlesworth, B. 1980.Evolution in Age-Structured Populations. Cambridge UK: Cambridge University Press.

    MATH  Google Scholar 

  • Chesson, P. L. 1994. Multispecies competition in varying environments.Theor. Population Biol. 45, 227–276.

    Article  MATH  Google Scholar 

  • Chesson, P. L. and S. Ellner. 1989. Invasibility and stochastic boundedness in monotonic competition models.J. Math. Biol. 27, 117–138.

    MATH  MathSciNet  Google Scholar 

  • Chesson, P. L. and R. R. Warner. 1981. Environmental variability promotes coexistence in lottery competitive systems.Am. Naturalist 117, 923–943.

    Article  MathSciNet  Google Scholar 

  • Cohen, D. and S. A. Levin. 1991. Dispersal in patchy environments: the effects of temporal and spatial structure.Theor. Population Biol. 39, 63–99.

    Article  MATH  MathSciNet  Google Scholar 

  • De Stasio, B. T. 1989. The seed bank of a freshwater crustacean: copepodology for the plant ecologist.Ecology 70, 1377–1389.

    Article  Google Scholar 

  • Ellner, S. 1989. Convergence to stationary distributions in two-species stochastic competition models.J. Math. Biol. 27, 451–462.

    Article  MATH  MathSciNet  Google Scholar 

  • Ellner, S. and N. G. Hairston, Jr. 1994. Role of overlapping generations in maintaining genetic variation in a fluctuating environment.Am. Naturalist 143, 403–417.

    Article  Google Scholar 

  • Ellner, S. and A. Sasaki. 1995. Patterns of genetic polymorphism maintained by fluctuating selection with overlapping generations.Theor. Population Biol. (in press).

  • Endler, J. A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Eshel, I. and M. W. Feldman. 1982. On evolutionary genetic stability of the sex ratio.Theor. Population Biol. 21, 430–439.

    Article  MATH  MathSciNet  Google Scholar 

  • Falconer, D. S. 1981.Introduction to Quantitative Genetics, 2nd ed. Harlow, UK: Longman Scientific & Technical.

    Google Scholar 

  • Frank, S. A. and M. Slatkin. 1990. Evolution in a variable environment.Am. Naturalist 136, 244–260.

    Article  Google Scholar 

  • Gillespie, J. H. 1991.The Causes of Molecular Evolution. Oxford, UK,: Oxford University Press.

    Google Scholar 

  • Hairston, N. G., Jr. 1988. Interannual variation in seasonal predation: its origin and ecological importance.Limnology and Oceanography 33, 1245–1253.

    Article  Google Scholar 

  • Hairston, N. G. Jr. and T. A. Dillon. 1990. Fluctuating selection and response in a population of freshwater copepods.Evolution 44, 1796–1805.

    Article  Google Scholar 

  • Hairston, N. G., Jr., S. Ellner and C. M. Kearns. 1995. Overlapping generations: the storage effect and the maintenance of biotic diversity. InPopulation Dynamics in Ecological Space and Time, O. E. Rhodes, R. K. Chesser and M. H. Smith (Eds). Chicago: University of Chicago Press (in press).

    Google Scholar 

  • Haldane, J. B. S. and S. D. Jayakar. 1963. Polymorphism due to selection in varying directions.Genetics 58, 237–242.

    Article  Google Scholar 

  • Hedrick, P. W. 1986. Genetic polymorphism in heterogeneous environments: a decade later.Ann. Rev. Ecology and Systematics 17, 535–566.

    Article  Google Scholar 

  • Horn, R. A. and C. R. Johnson. 1985.Matrix Analysis. Cambridge, U.K.: Cambridge University Press.

    MATH  Google Scholar 

  • Karlin, S., 1988. Non-Gaussian phenotypic models of quantitative traits. pp. 123–144 InThe Second International Conference on Quantitative Genetics, E. J. Eisen, M. M. Goodman, G. Namkoong and B. S. Weir (Eds). Boston: Sinauer.

    Google Scholar 

  • Karlin, S. and U. Liberman 1974. Random temporal variation in selection intensities: case of large population size.Theor. Population Biol. 6, 355–382.

    Article  MATH  Google Scholar 

  • Lande, R. 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci.Genetical Res. 26, 221–234.

    Article  Google Scholar 

  • Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution.Evolution 31, 314–334.

    Article  Google Scholar 

  • Lande, R. 1977. The influence of the mating system on the maintenance of genetic variability in polygenic characters.Genetics 86, 485–498.

    Google Scholar 

  • Lande, R. 1982. A quantitative genetic theory of life history evolution.Ecology 63, 607–615.

    Article  Google Scholar 

  • Ludwig, D. and S. A. Levin. 1991. Evolutionary stability of plant communities and the maintenance of multiple dispersal types.Theor. Population Biol. 40, 285–307.

    Article  MATH  Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and S. A. H. Geritz. 1992. How should we define “fitness” for general ecological scenarios?Trends in Ecology and Evolution 7, 198–202.

    Article  Google Scholar 

  • Nagylaki, T. 1993. Evolution of multilocus systems under weak selection.Genetics 134, 627–647.

    Google Scholar 

  • Orzack, S. H. 1993. Life history evolution and population dynamics in variable environments: some insights from stochastic demography. InAdaptation in Stochastic Environments. Lectute Notes in Biomathematics, J. Yoshimura and C. W. Clark (Eds) Vol. 98, pp. 63–104. Berlin: Springer-Verlag.

    Google Scholar 

  • Orzack, S. H. and S. Tuljapurkar. 1989. Population dynamics in variable environments. VII. The demography and evolution of iteroparity.Am. Naturalist 133, 901–923.

    Article  Google Scholar 

  • Sasaki, A. and S. Ellner. 1995. The evolutionarily stable phenotype distribution in a random environment.Evolution (in press).

  • Seger, J. and H. J. Brockmann. 1987. What is bet-hedging?Oxford Surveys in Evolutionary Biology 4, 182–211.

    Google Scholar 

  • Templeton, A. R. and D. A. Levin. 1979. Evolutionary consequences of seed pools.Am. Naturalist 114, 232–249.

    Article  Google Scholar 

  • Tuljapurkar, S. 1989. An uncertain life: demography in random environments.Theor. Population Biol. 35, 227–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Tuljapurkar, S. 1990.Population Dynamics in Variable Environments.Lecture Notes in Biomathematics, Vol. 85. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Turelli, M. 1978. A reexamination of stability in randomly varying versus deterministic environments with comments on the theory of limiting similarity.Theor. Population Biol. 13, 244–267.

    Article  MATH  MathSciNet  Google Scholar 

  • Turelli, M. 1988. Population genetic models for polygenic variation and evolution. In E. J. Eisen, M. M. Goodman, G. Namkoong and B. S. Weir (Eds), inThe Second International Conference on Quantitative Genetics, pp. 601–618. Boston: Sinauer.

    Google Scholar 

  • Turelli, M. and N. H. Barton. 1990. Dynamics of polygenic characters under selection.Theor. Population Biol. 38, 1–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshimura, J. and C. W. Clark (Eds) 1993.Adaptation in Stochastic Environments.Lecture Notes in Biomathematics, Vol. 98. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellner, S. Environmental fluctuations and the maintenance of genetic diversity in age or stage-structured populations. Bltn Mathcal Biology 58, 103–127 (1996). https://doi.org/10.1007/BF02458284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458284

Keywords

Navigation