Skip to main content
Log in

Ocean plankton populations as excitable media

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Plankton populations undergo dramatic surges. Rapid increases and decreases by a factor of 10 or more are observed, often separated by relatively stable interludes. We propose a description of plankton communities as excitable systems. In particular, we present a model for the evolution of phytoplankton and zooplankton populations which resembles models for the behaviour of excitable media. The parameter dependency of the various “excitable” phenomena, trigger mechanism, threshold, and slow recovery, is clear, and permits ready investigation of the influence of properties of the physical environment, including variations in nutrient fluxes, temperature or pollution levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Busenberget al. 1990. The dynamics of a plankton-nutrient interaction.Bull. math. Biol. 52, 677.

    Article  MATH  Google Scholar 

  • Cloern, J. E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary.J. mar. Res. 49, 203.

    Article  Google Scholar 

  • Grindrod, P. 1991.Patterns and Waves. Oxford: Oxford Universit Press.

    MATH  Google Scholar 

  • Holling, C. S. 1959. The components of predation as revealed by a study of small mammal predation on the European pine sawfly.Can. Ent. 91, 293.

    Article  Google Scholar 

  • Iizuka, S.et al. 1989. Population growth ofGymnodinium nagasakiense red tide in Omura Bay. In:Red Tides: Biology, Environmental Science and Toxicology T. Okaichi (Ed.), p. 269. Amsterdam: Elsevier.

    Google Scholar 

  • Iwasaki, H. 1989. Recent progress of red tide studies in Japan: an overview. In:Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi (Ed.), p. 3. Amsterdam: Elsevier.

    Google Scholar 

  • Levin, S. A and L. Segel. 1976. Hypothesis for the origin of plankton patchiness.Nature 259, 659.

    Article  Google Scholar 

  • Ludwig, D.et al. 1978. Quanlitative analysis of an insect outbreak system: the spruce budworm and forst.J. Anim. Ecol. 47, 315.

    Article  Google Scholar 

  • almeida Machado P. 1978. Dinoflagellate blooms on the Brazilian South Atlantic coast. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 29. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Murray, J. M. 1990.Mathematical Biology, Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Morey-Baines, G. 1978. The ecological role of red tides in the Los Angeles-Long Beach Harbour food web. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 315. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Nishijima, T. and Y. Hata. 1989. The dynamics of vitamin B12 and its relation to the outbreak ofChattonella red tides in Harima Nada, the Seto inland sea. In:Red. Tides: Biology, Environmental Science and Toxicology, T. Okaichi (Ed.), p. 257, Amsterdam: Elsevier.

    Google Scholar 

  • Park, J. S.et al. 1989. Studies on red tide phenomena in Korean coastal waters. In:Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi (Ed.), p. 37. Amsterdam: Elsevier.

    Google Scholar 

  • Pingree, R. D.et al. 1975. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel.Nature 258, 672.

    Article  Google Scholar 

  • Provasoli, L. 1978. Recent progress: an overview. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 1. Amsterdam, Elsevier/North-Holland.

    Google Scholar 

  • Satora, T. and A. Laws. 1989. Periodic blooms of the silicoflagellateDictyocha perlaevis in the subtropical inlet, Kaneohe Bay, Hawaii. In:Red Tides: Biology, Environmental Science and Toxicology, T. Okaichi (Ed.), p. 69, Amsterdam: Elsevier.

    Google Scholar 

  • Tyson, J. and J. Keener. 1988. Singular perturbation theory of travelling waves in excitable media (a review).Physica D 32, 327.

    Article  MATH  MathSciNet  Google Scholar 

  • Uye, S. 1986. Impact of copepod grazing on the red tide flagellateChattonella antiqua.Mar. Biol. 92, 35.

    Article  Google Scholar 

  • Wake, G.et al. 1991. Picoplankton and marine food chain dynamics in a variable mixed layer: a reaction-diffusion model.Ecol. modelling 57, 193.

    Article  MathSciNet  Google Scholar 

  • Wyatt, T. and J. Horwood. 1973. Model which generates red tides.Nature 244, 238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truscott, J.E., Brindley, J. Ocean plankton populations as excitable media. Bltn Mathcal Biology 56, 981–998 (1994). https://doi.org/10.1007/BF02458277

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458277

Keywords

Navigation